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Abstract

We show meromorphic extension and give a complete description of the divisors of a Selberg zeta func-
tion of odd type Z{. 5 (1) associated to the spinor bundle X on an odd dimensional convex co-compact

hyperbolic manifold I” \H2"t1 Asa byproduct we do a full analysis of the spectral and scattering theory
of the Dirac operator on asymptotically hyperbolic manifolds. We show that there is a natural eta invariant
n(D) associated to the Dirac operator D over a convex co-compact hyperbolic manifold I” \]HIz”"'1 and that
exp(mwin(D)) = Z;’ﬂ’ 5 (0), thus extending Millson’s formula to this setting. Under some assumption on the
exponent of convergence of Poincaré series for the group I”, we also define an eta invariant for the odd sig-
nature operator, and we show that for Schottky 3-dimensional hyperbolic manifolds it gives the argument
of a holomorphic function which appears in the Zograf factorization formula relating two natural Kéhler
potentials for Weil-Petersson metric on Schottky space.
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1. Introduction

The eta invariant is a measure of the asymmetry of the spectrum of self-adjoint elliptic oper-
ators which has been introduced by Atiyah, Patodi and Singer as the boundary term in the index
formula for compact manifolds with boundary [1]. For an elliptic self-adjoint pseudo-differential
operator D of positive order acting on a bundle over a closed manifold, it is defined as the value
at s = 0 of the meromorphic function

s+1
—sfl 1

n(D,s):=Ti(D(D?*) 2 )= For / =3 Tr(De_’Dz)dz,
0

which admits a meromorphic continuation from 9i(s) > 0 to s € C and is regular at s = 0. In
heuristic terms, (D) := n(D, 0) computes the asymmetry Tr(D|D|_1).

By applying Selberg’s trace formula, Millson [27] proved that for any (4m — 1)-dimensional
closed hyperbolic manifold X i := I'\H*"~! the eta invariant (A) of the odd signature opera-
tor A on odd forms A°4d = @220 A%P~1 can be expressed in terms of the geodesic flow on the
unit sphere bundle of X . Millson defined a Selberg zeta function of odd type by

~ Z i X+ (R()*) = x_(R()*) 6‘”‘“”) (1.1)

Zr A = exp( ]

yeriot  ldet@d—Pbz K
where P denotes the set of primitive closed geodesics in X, R(y) € SO(4m — 2) is the holon-
omy along a geodesic y, x+ denotes the character associated to the two irreducible represen-
tations of SO(4m — 2) corresponding to the +i eigenspace of x acting on A>"~! P(y) is the
linear Poincaré map along y, and £(y ) is the length of the closed geodesic y . Then he showed that
Z?-y 4 (A) extends meromorphically to A € C, its only zeros and poles occur on the line 9%(1) =0
with order given in terms of the multiplicity of the eigenvalues of A, and the following remark-
able identity holds:

"N = 79, ,(0).

The same result has been extended to compact locally symmetric manifolds of higher rank by
Moscovici and Stanton [28]. It is somehow believed that central values of Ruelle or Selberg type
dynamical zeta functions have some kind of topological meaning and this identity, as well as
Fried’s identity [8], provide striking examples.

It is a natural question to try to extend this identity and to study the meromorphic extension
and the zeros and poles of the zeta function Z7. , (1) on non-compact hyperbolic manifolds. The
first step in this direction has been done by the third author in [29] for cofinite hyperbolic quo-
tients, where the functional equation satisfied by the Selberg zeta function of odd type holds with
extra contributions from the cusps, in the guise of the determinant of the scattering matrix. In the
present work, we carry out this program for convex co-compact manifolds, i.e., geometrically fi-
nite hyperbolic manifolds with infinite volume and no cusps. For particular 3-dimensional Schot-
tky groups, our results have interesting connections to Teichmiiller theory, as we explain below.

The proof of the meromorphic extension of any reasonable dynamical zeta function on co-
compact hyperbolic manifolds is contained in the work of Fried [9] using transfer operator
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techniques in dynamics, but as explained by Patterson and Perry [30], it extends to the con-
vex co-compact setting in a natural way. However there is no general description of the zeros
and poles, while we know in the co-compact and cofinite cases that these are related to spectral
and topological data since the work of Selberg [32]. There are now some rather recent works of
Patterson and Perry [30] and Bunke and Olbrich [3] which give a complete description of the
zeros and poles of the original Selberg zeta function on convex co-compact hyperbolic (real)
manifolds. The case of Selberg zeta functions attached to homogeneous vector bundles is not yet
completely described.

In this paper we study mainly the Dirac operator acting on the spinor bundle X' over a convex
co-compact hyperbolic manifold X - := I'\H?**!. The basic quantity associated with I" for this
case is its exponent § - defined to be the smallest number such that

> " exp(—Ary) < oo (1.2)

yell

for all A > 6. Here r), denotes the hyperbolic distance dyn+1(m, ym) for a fixed point m €
H9*!, For » > 8 — n, we define the Selberg zeta function of odd type Z}) 5 (1) associated to
the spinor bundle X' exactly like in (1.1) except that R(y) denotes now the holonomy in the
spinor bundle ¥ along y, and x4 denotes the character of the two irreducible representations
of Spin(2n) corresponding to the +i eigenspaces of the Clifford multiplication cl(7;,) with the
tangent vector field T, to y. Like for the hyperbolic space H?"+! | the Dirac operator D acting on
the spinor bundle X' on a convex co-compact hyperbolic manifold X has continuous spectrum
the real line R, and one can define its resolvent for 91(1) > 0 in two ways

Ry(M):=(D+in"", R_(W):=(D—i)"!
as analytic families of bounded operators acting on L(X ; ¥). We then first show

Theorem 1.1. The Selberg zeta function of odd type Z;’«’ 5 (X) associated to the spinor bundle ¥

on an odd dimensional spin convex co-compact hyperbolic manifold X r = M'\H***! has a mero-
morphic extension to C and it is analytic in a neighborhood of the right half-plane {R(}) > 0}.
The resolvents Ry ()\) of the Dirac operator have meromorphic continuation to A € C when con-
sidered as operators mapping C3°(Xr, X) to its dual C~°°(X, X'*), and the poles have finite
rank polar part. A point Lo € {R(X) < 0} is a zero or pole of Z¢. 5. (1) if and only if the meromor-
phic extension of Ry (L) or of R_(A) has a pole at Lg, in which case the order of Ao as a zero or
pole of Z}’ﬂ,x()\) (with the positive sign convention for zeros) is given by

rankRes;, R_ (1) —rankRes;, R1(}).

We stress that our approach is closer to that of Patterson and Perry than that of Bunke and Ol-
brich. In so far as analysis is concerned, we deal with a much more general geometric setting in
arbitrary dimensions and we prove various results which were previously known for the Lapla-
cian on functions. We consider asymptotically hyperbolic manifolds (AH in short). These are
complete Riemannian manifolds (X, g) which compactify smoothly to compact manifolds with
boundary X, whose metric near the boundary is of the form g = g/x? where g is a smooth metric
on X and x is any boundary defining function of 8X in X, and finally such that ldx|g=1at aX,
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a condition which is equivalent to assuming that the curvature tends to —1 at the boundary. Con-
vex co-compact hyperbolic manifolds are special cases of AH manifolds. Using the machinery of
Mazzeo and Melrose [25], we show that the spectrum of D on AH manifolds is absolutely con-
tinuous and given by R, that the resolvents R4 ()) defined above have meromorphic extensions
to A € C, and we define the scattering operator S(A) : C* (X, ¥) — C*(3X, ¥) by consider-
ing asymptotic profiles of generalized eigenspinors on the continuous spectrum. The family S())
extends to a meromorphic family of elliptic pseudo-differential operators acting on the boundary
with the same principal symbol as Dy | Dy, |**=1 (up to a multiplicative constant), where Dy, is
the Dirac operator induced by the metric g|;,%. The scattering operator is a fundamental object
in the analysis of Selberg zeta function for convex co-compact manifolds, and we study it thor-
oughly in this work. We also show in a follow-up note [15] that the construction and properties
of the scattering operator have some nice applications, for instance the invertibility of S(A) ex-
cept at discrete A’s implies that the index of D,jo vanishes (the so-called cobordism invariance
of the index), and the operator %(Id —S5(0)) is a complementary Calder6n projector of the Dirac
operator D corresponding to g, providing a natural way of constructing the Calderén projector
without extending D or doubling the manifold X.

For the second result, we prove that Millson’s formula holds for the Dirac operator on odd
dimensional spin convex co-compact hyperbolic manifolds, and also for the signature operator
under some condition on 8.

Theorem 1.2. Let X = N'\H?**! be an odd dimensional spin convex co-compact hyperbolic

manifold. Then the function tr(De_tDz)(m) € C®(Xr) isin L' (Xr), where tr denotes the local
trace on the spinor bundle. The eta invariant n(D) can be defined as a convergent integral by

n(D) := %/ﬁ( /tr(De_’Dz)(m)dv(m)) dt, (1.3)
0

Xr

and the following equality holds
") = 79 (0. (1.4)

If 2n 4+ 1 =4m — 1 and the exponent of convergence of Poincaré series S is strictly less than
n =2m — 1, then the eta invariant n1(A) can also be defined replacing D by the odd signature
operator A and X by the bundle of forms A°4 = @;’io A2~V in (1.3), moreover we also have

e = 79, (0).

The assumption about 8 for the equality ™74 = Z9. (0) is rather a technical condition
than a serious problem. Most of the analysis we do here for Dirac operator D goes through with-
out significant difficulties to the signature operator A, but it appears to be slightly more involved
essentially due to the fact that the continuous spectrum of A has two layers corresponding to
closed and co-closed forms. The complete analysis for forms in all dimensions will be included
elsewhere.

To conclude this Introduction and to motivate the eta invariant n(A) of the odd signature
operator A, we describe the particular case of Schottky 3-dimensional manifolds with 6 < 1,
where the eta invariant 7(A) can be considered as a function on the Schottky space G,. Here the
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Schottky space G, is the space of marked normalized Schottky groups with g generators. It is a
complex manifold of dimension 3g — 3, covering the Riemann moduli space 91, and with uni-
versal cover the Teichmiiller space T. It describes the deformation space of the 3-dimensional
hyperbolic Schottky manifolds X = I"'\H?. Like %, the Schottky space &, has a natural Kéh-
ler metric, the Weil-Petersson metric. In [33,34], Takhtajan and Zograf constructed two Kéhler
potentials of the Weil-Petersson metric on &g, that is,

Det A
detImt

aés:aé<—12nlog >=2ia)wp

where 3 and 9 are the (1,0) and (0, 1) components of the de Rham differential d on & ¢ TE-
spectively, and ww p is the symplectic form of the Weil-Petersson metric; here S is the so-called
classical Liouville action, Det A and 1 denote the ¢-regularized determinant of the Laplacian A
of hyperbolic metric and the period matrix respectively over the Riemann surface corresponding
to an inverse image in €, of a point in &,. Let us remark that Det A and detImt descend to
well-defined functions on &,. We show that

Theorem 1.3. The function F defined on 62 ={I"€Gy;6r <1} by

Det A S e (A)
= expl — —im
detImt P 127 o

is holomorphic. In particular, the eta invariant n(A) is a pluriharmonic function on Gg.

The condition §; < 1 in Theorem 1.3 simplifies the proof at several stages. But, one can
expect that a similar result still holds over the whole Schottky space G, . This extension problem
will be discussed elsewhere.

2. The Dirac operator on real hyperbolic space
2.1. Dirac operators over hyperbolic spaces
The (d + 1)-dimensional real hyperbolic space is the manifold
HI*! = {x e RI*? | xé +x12 +~--+x§ —x§+1 =—1, xg41 > O}

equipped with the metric of curvature —1. The orientation preserving isometries of H?*! form
the group SOg(d +1, 1), which is the identity connected component of SO(d + 1, 1). The isotropy
subgroup of the base point (0, ...,0, 1) is isomorphic to SO(d + 1). Hence the real hyper-
bolic space HA*! can be identified with the symmetric space SOg(d + 1, 1)/SO(d + 1). Since
G = Spin(d + 1, 1), K = Spin(d + 1) are double coverings of SOg(d + 1, 1), SO(d + 1) respec-
tively, we see that SOg(d + 1, 1)/SO(d + 1) = G/K and we use the identification HH >~ G/K
for our purpose. We denote the Lie algebras of G, K by g = spin(d + 1, 1), £ =spin(d + 1)
respectively. The Cartan involution 6 on g gives us the decomposition g = ¢ & p where €, p are
the 1, —1 eigenspaces of 6 respectively. The subspace p can be identified with the tangent space
T,(G/K) = g/t at o = eK € G/K where e denotes the identity element in G. The invariant
metric of curvature —1 over H*! is given by the normalized Cartan—Killing form
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1
(X, ¥) 1= = C(X.0Y) 2.1

where the Killing form is defined by C(X,Y) =tr(ad X o adY) for X, Y € g.

Let a be a fixed maximal abelian subspace of p. Then the dimension of ais 1. Let M = Spin(d)
be the centralizer of A =exp(a) in K with Lie algebra m. We put § to be the positive restricted
root of (g, a). Let p denote the half-sum of the positive roots of (g, a), that is, p = % B. From
now on, we use the identification

W =C byrg— A 2.2)

Let n be the positive root space of 8 and N = exp(n) C G. The Iwasawa decomposition is given
by G = K AN. Throughout this paper we use the following Haar measure on G,

dg =a**dkdadn =a"*"dndadk (2.3)

where g = kan is the Iwasawa decomposition and a*” = exp(2p(loga)). Here dk is the Haar
measure over K with || x dk =1, da is the Euclidean Lebesgue measure on A given by the
identification A = R viaa, = exp(r H) with H € a, B(H) = 1, and dn is the Euclidean Lebesgue
measure on N induced by the normalized Cartan—Killing form (-,-) given in (2.1).

The spinor bundle X (H*!) can be identified with the associated homogeneous vector bundle
over H?*t! = G /K with the spin representation t; of K = Spin(d + 1) acting on Vo, = (Cz[dﬂ/z],
that is,

Z(H) =G xq, Vo — BT = G/K. (2.4)

Here points of G x, V;, are given by equivalence classes [g, v] of pairs (g, v) under (gk, v) ~
(g, t4(k)v). Hence the sections of G x, Vr, from G/K consist of functions f : G — V, with
the K -equivariant condition,

fgh)y =tk £

for g € G, k € K. Recall that 74 is irreducible if d + 1 is odd, while it splits into 2 irreducible
representations if d + 1 is even.
Let us denote by

V- COO(Hd+1; E(Hd+1)) N Coo(Hd+1; T*(Hd+1) ® Z‘(Hd+l))

the covariant derivative induced by the lift of the Levi-Civita connection to the spinor bundle
X (H*1), and by cl : T, (H*!) — End X, (H4t1) the Clifford multiplication. Then the Dirac
operator Dya+1 acting on C{°(HYT!; X (HY™)) is defined by

d+1
Dggasi f(m) =Y _cl(ej)Ve, f(m) for f e Co°(H!H; 2 (H))
j=I

where (e J-)d.:i denotes an orthonormal frame of 7}, (H?*!). The Dirac operator Dyqa+1 1s an
essentially self-adjoint, elliptic and G-invariant differential operator of first order, and we use
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the same notation for its self-adjoint extension to Lz(HdH; E(Hd+l)). It is well known that
the spectrum of Dya+1 on L2(HIF!; ¥ (H4+1)) consists only of the absolutely continuous spec-
trum R (for instance, by Cor. 4.11 in [6]).

2.2. The resolvent on HA+!

Let us define the resolvent of D? in the half-plane {%(%) > 0} by
—1
Ryar (M) = (Dyr, +1%)

which maps L2(H?*!; ¥ (H*1)) to itself. Recall the hypergeometric function F(a, b, ¢, z) de-
fined by

L A T@+hrb+hre)
F(“’b’C’Z)_g F@IOIe+k K

for |z] < 1.

Then we have from the work of Camporesi [5, Th. 6.2 and 6.3],

Proposition 2.1 (Camporesi). For R(A) > 0, the respective Schwartz kernels of Rya+1(A) and
Dya+1 Ryga+1 (L) are given by

r 4 nro
Ryga1 (hym,m') = -+ =4t M(cosh(rﬂ)

)—d—Z)L
2. +1)

d+1
x F<% +A,A,2A+l;cosh_z(r/2)>U(m,m/), (2.5)

Dya+1 Rga+1 (A; m, m/)

i onra+1 D)
_ gy, -t T A VI )(cosh(r/2)) @HD=2 Ginh(r/2)
r2r+1)

d+1
X F(% + A, A+1,204+1; cosh_z(r/Z)) cl(vm’m/)U(m, m’) (2.6)

where r = dya+1(m, m’) form,m’ € HA+H!, Um,m' IS the unit tangent vector at m to the geodesic
from m’ to m and U (m,m’) is the parallel transport from m’ to m along the geodesic between
them. Moreover Rya+1 (L) has an analytic continuation in C\ {0} with a simple pole at ». = 0 and
Dya+1 Ra+1 (M) admits an analytic continuation to A € C (thus with no pole), as distributions on
Hd—H % Hd+l.

Remark. If one denotes Rypa+1(A; m;m') = Q; (r)U (m, m’) where r = dya+1 (m, m’), the func-
tion Q,(r) satisfies that O, (r) — Q_,(r) is smooth in r near r = 0. This can be checked using
functional equations of hypergeometric functions but actually follows directly from elliptic reg-
ularity since Q; (r) — Q_,(r) (since the difference of resolvents too) solves an elliptic ODE.
The kernel DIT(A; m,m’) of D(Rya+1(A) — Rya+1(—2)) is then also smooth near the diagonal
m = m’ and following the proof of [5, Th. 6.3], we see that it can be written under the form
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d
cosh=2(r/2) ((cosh™(§)™ Hy.(cosh™2(§)))
cosh(%)d+4

d
Dﬂ(k;m,m/) = —%sinh(r) 1y, m)U (m, m")

where H;L(cosh_z(r/Z)) = QO (r) — Q_,(r) with H, (u) smooth near u = 1. Then we deduce
that on the diagonal DIT(x; m,m) =0.

2.3. Dirac operators over convex co-compact hyperbolic manifolds

Let I" denote a convex co-compact torsion-free discrete subgroup of G = Spin(d + 1, 1) such
that its co-volume Vol(I"\G) = oco. Hence

Xr:=I\G/K

is a (d + 1)-dimensional convex co-compact hyperbolic manifold of infinite volume, which is a
spin manifold by construction. The boundary dH¢+!, which can be identified with K /M, admits
a I"-invariant decomposition into £2(1") U A(I") where §2(I") # @ is open and I" acts freely
and co-compactly on H¢+! U £2(I"). Hence X 1 can be compactified by adjoining the geodesic
boundary 1"\ $2(I").

By the identification (2.4) of the spinor bundle X (H¢*+!) with the homogeneous vector bundle
G x, Vi, we can also identify the spinor bundle X (X ) over X  with the locally homogeneous
vector bundle I'\(G x; V¢,). Here I" acts on G x, Vy, by y[g,v]l=[yg,v] for y € I'. We
can also push down the Dirac operator Dy«+1 to X, which we denote by D. We also use the
same notation for its unbounded self-adjoint extension in L*(Xp; X(Xr)), that is,

D:L*(Xr; 2(Xp)) — L*(Xr; 2(Xr)).

By Corollary 3.4 below (cf. Cor. 7.9 and Th. 11.2 in [4]), the Dirac operator D over
L*(X; X(Xr)) has no discrete spectrum and only absolutely continuous spectrum R.

3. Resolvent of Dirac operator on asymptotically hyperbolic manifolds

In this section, we analyze the resolvent R(1) of D? on an asymptotically hyperbolic manifold
(AH in short) of dimension (d 4 1). An asymptotically hyperbolic manifold is a complete non-
compact Riemannian manifold (X, g) which compactifies in a smooth manifold with boundary X
and there is a diffeomorphism  (called product decomposition) from a collar neighborhood
[0,€), x 8X of the boundary to a neighborhood of 39X in X so that

dx*+h
yrg= T G.)

X

for some one-parameter family of metrics 4, on the boundary 3X depending smoothly on x €
[0, €). By abuse of notations, we will write x for 1,x, and x is then a boundary defining function
in X near X, satisfying |dx| 2 = 1. A boundary defining function satisfying |dx|,2, = 1 near
the boundary is called geodesic boundary defining function, and it yields a diffeomorphism
like in (3.1) by taking the flow of the gradient vrex starting at the boundary. Following the
terminology of [12], we shall say that
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the metric is even if the Taylor expansion of %, at x = 0 contains only even powers of x. (3.2)

This property does not depend on the choice of the diffeomorphism 1 but only on g, see
[12, Lemma 2.1]. It is well known that convex co-compact quotients Xy = I” \]I-]I‘ZJrl are even
AH manifolds (see [25]). Note that the metric & is not canonical since it depends on the choice
of v, but its conformal class [/4¢] is canonical with respect to g.

3.1. O-structures, spinor bundle and Dirac operator

Following the ideas of Mazzeo and Melrose [25] (and refer to this paper for more details),
there is a natural structure associated to AH manifolds, this is encoded in the Lie algebra Vo(X)
of smooth vector fields vanishing at the boundary, whose local basis over C*°(X) is given near
the boundary 0X by the vector fields (xdy, xdy,, ..., xdy,) if (x, ¥1,..., yg) is a local chart near
apoint p € dX and x is a smooth boundary defining function in X. The algebra is also the space
of smooth section of a bundle °7 X with local basis near p given by (x0y,x0y,, ..., xdy,) and
its dual space is denoted °T*X, with local basis (dx/x,dy;/x, ...,dys/x). The metric g is a
smooth section of the bundle of positive definite symmetric form S3 (°T*X) of °T*X.

Let us define g := x2g where x is a boundary defining function appearing in (3.1). If (X, g) is
orientable, there exists an SO(d + 1)-bundle , F(X) — X over X, but also an SO(d + 1)-bundle
9F(X) — X defined using the O-tangent bundle °7 X and the metric g smooth on it. If (X, g)
admits a spin structure, then there exists a 0-spin structure on (X, g) in the sense that there is a
Spin(d + 1)-bundle ?F (X) — X which double covers gF (X) and is compatible with it in the
usual sense. This corresponds to a rescaling of the spin structure related to (X, g). The 0-spinor
bundle X (X) can then be defined as a bundle associated to the Spin(d + 1) principal bundle
YF(X), with fiber at p € X

05, (X)=2F, x4, Vi,.

The vector field xd, := xVE&(x) in the collar neighborhood is unit normal to all hypersurfaces
{x = constant}. The 0-spinor bundle on X splits near the boundary under the form

2 =92, 0%, where >, :=ker(cl(xdy) Fi),

note that this splitting is dependent on the choice of the geodesic boundary defining function x
except at the boundary X where it yields an independent splitting of the spinor (since the one-
jet of xV¥8x is independent of x at 3X). To avoid confusions later (and emphasize the fact
that it is only depending on the conformal class (9 X, [ho])), we shall define cl(v) the linear map
on %] ax by

clw)yr :=cl(x0y) .

At the boundary, ) |5 is diffeomorphic to the spinor bundle X(3X) on (3X, hy), this is not
canonical since it depends on A¢ and thus on the choice of x, however the splitting above is.
Notice also that in even dimension d + 1 = 2m, the splitting 2, @ ©X_ near the boundary is
not the usual splitting of the spinor bundle into positive and negative spinors, i.e., into the 1
eigenspaces of the involution w :=i" cl(ey) . ..cl(e2y), where (e;); is any orthonormal oriented
local basis of °T X . The Dirac operator near the boundary has the form
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d
2

D= %(cl(xax)xax + P) 2, Pe Diff(l)(Y; OZ‘) (3.3)
where P is a first order differential operator in tangential derivatives, which anticommutes with
cl(xdy) and such that P = x Dy, + O (x?) where Dy,, is the Dirac operator on X equipped
with the metric hg. If the metric g is even, it is easy to see that locally near any point y’ of the
boundary, if (xdy,xYq, ..., xYy) is an orthonormal frame near y" and (x, y) are coordinates on
[0,€) x 9X there, then P is of the form

=)

for some differential operators P; of order 1 and with smooth coefficients in (x2, y). This can be
checked for instance by using the conformal change formula D = x2+1Dx~% where D is the
Dirac operator for the metric g = x2g which is smooth in the coordinates (x = x2, y) down to
x = 0. From these properties, it is straightforward to check that if g is even, then for x geodesic
boundary defining function fixed, D preserves the space A+ C C*®(X;°X) of smooth spinors
which have expansion at the boundary of the form

o]

o ~s0 »_x Yy, with ¥ € Z1(0X) and Yj41 € Zx(0X). (3.4)
j=0

3.2. The stretched product

Following Mazzeo and Melrose [25], we define the stretched product X x¢ X as the blow-up
[X x X, Ay] of X x X around the diagonal in the boundary Ay :={(y,y) € X x 8)_(}. The
blow-up is a smooth manifold with codimension 2 corners, and 3 boundary hypersurfaces, the
left boundary denoted 1b, the right boundary denoted rb and the new face, called ‘front face’ and
denoted ff, obtained from the blow-up. The blow-down map is denoted 8 : X xo X — X x X
and maps int(Ib) to X x X, int(rb) to X x 89X and ff to Ay. The face ff is a bundle over Ay ~
dX with fibers a quarter of d-dimensional sphere Let us use the boundary defining function x
in (3.1), which induces x := 7/ x and x" := 7 Rx as boundary defining functions of X x X where
mr, wr are the left and right pI'O]CCthH X x X — X. The fiber ff, of the front face ff (with
p=(,y") €dX x 8X) is, by definition of blow-up, given by the quotient

ff, = ((Np(As, 30X x 3X) x (RT0x) x (RT0,)) \ {0}) /{(w, t,u) ~s(w', ¢, '), s > 0}
(3.5)

where in general N (M, Y) denotes the normal bundle of a submanifold M in a manifold Y. Since
T, 0X is canonically isomorphic to N, (A, 90X x dX) by z € Ty 0X — (z, —z) € Tp(0X x 0X),
ho(y") induces a metric on N, (Aj, dX x 9X). Then ff p 18 clearly identified with the quarter of
sphere

ff, = {w +13s +udy € Np(Ap, 90X x 3X) x (RT3) x (RT3, 12 +u® + |w|§0(y,) =1}.
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In projective coordinates (s :=t/u, z := w/u) € (0, 00) x R?, the interior of the front face fiber
ff, is diffeomorphic to Hd“'l.ln the same way we define the blow-up X x00X of X x X
around Aj and the blow-up dX xg dX of dX x 0X around Ajy. The first one is canonically
diffeomorphic to the face rb of X xo X while the second one is canonically diffeomorphic to
Ib N1b.

The manifold X x X carries the bundle

e="TXR'T*X)

which on the diagonal is isomorphic to End(°X). This bundle lifts under 8 to a bundle over
X x0 X, still denoted by &, whose fiber at the front face ff is identified to OZ‘y/()? )X OE;,()? )
everywhere on the fiber ff,, (here p = (y', y') € Ay) if OEy/ (X) is the fiber of X (X) at the point
y €dX.

On a manifold with corners M with a smooth bundle £ — M, let us denote by C *(M; E)
the space of smooth sections of E which vanish to all order at the (topological) boundary and
let C~°°(M; E*) be its dual, the elements of which are called extendible distributions. Then
B* is an isomorphism between C®(X x X: &) and C®(X x¢ X; &) and also between their
duals, meaning that distributions on X x X can be as well considered on the stretched product.

Ip WlElt follows, we cgnsider the Schwartz kernel K4 € C _°°()? x X €) of an operator A :
C®(X;%%) - C~°(X; %) defined by

(AY, ¢) = (Ka, ¢ B V)

where (-,-) is the duality pairing using the volume density of the metric. By abuse of notations
we will write A(m,m’) for K4(m,m’) and the bundle € at the diagonal will be identified to
End(°X).

3.3. Pseudo-differential operators

We define the space Wg’l’a’ﬂ()?; 02) form e R, «, B € C as in [22,25], and refer the reader to
these references for more details. An operator A is in lllg”a’ﬁ (X;9%) if its Schwartz kernel K 4
lifts to X xo X to a distribution 8*(K 4) which can be decomposed as a sum K }‘ +K f‘ with K }‘ €
pﬁ)pﬁjcw()_( x0 X; &) and K5 € I'"(X x0 X, A; &) where I"M (X x¢ X, A; €) denotes the space
of distribution on X x¢ X classically conormal to the lifted diagonal A := g*({(m, m) € X x X})
of order m and vanishing to infinite order at the left and right boundaries 1b U rb.

3.4. Microlocal structure of the resolvent on H4t!

We want to describe the resolvent kernel as a conormal distribution on a compactification
of H4+! x HY+! | in order to show later that a similar result holds for convex co-compact quo-
tients and more generally asymptotically hyperbolic manifolds. Here we let H¢+! be the natural
compactification of H?*!, i.e., the unit ball in R4+,

Lemma 3.1. The analytically extended resolvent RHMI (A) == (Dyga+1 £ 1)1 of the Dirac op-

. “1IAt$A+d —
erator Dya+1 on HY™ is in the space W, 2T A+ 0 3,
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Proof. The proof is very similar to the case of the Laplacian on functions dealt with in [25], since
we have cosh(r/2) 72 € ppp o C® (HA+! xoHI+1\ A) and it is a smooth function of the distance,
and since, by the remark after Lemma A.2, the lift of U (;m, m) by 8* is smooth on H4+1 xH4+1,
combining the formulae (2.5), (2.6) proves our claim, except for the singularity at the diago-
nal A. The conormal diagonal singularity can be easily seen by applying the first step of the
parametrix of Mazzeo and Melrose (we refer to the proof of Proposition 3.2 below) near the di-
agonal, indeed the construction shows that there exists QQ_L()») € llfofl’oo’oo(lfw; 05 such that
(Dgar1 £i)(RE™ 0) = 0% (1)) and (RE™ (1) — 09.(2.)) (Dygas1 i 1) have a smooth kernel in
a neighborhood of A down to the front face ff, and so by O-elliptic regularity RE‘H] ) — Q(j)t(k)
is smooth near A down to ff. O

Note that the resolvent can be also considered as a convolution kernel on H4*! with a conor-
mal singularity at the center 0 € H*!,

3.5. The parametrix construction of Mazzeo and Melrose

We can construct the resolvent R4 (A) 1= (D=4iA)~! through a pseudo-differential parametrix,
following Mazzeo and Melrose [25] or Mazzeo [22]. We will not give the full details since this
is a straightforward application of the paper [25] and the analysis of the resolvent RH‘HI (A) on
the model space H9+!. This will be done in 3 steps. If E, F are smooth bundles over X, we
will say that a family of operator A(A) : C®(X; E) — C~°°(X; F) depending meromorphically
on a parameter A € C is finite meromorphic if the polar part of A(L) at any pole is a finite rank
operator.

Proposition 3.2. Let (X, g) be a spin asymptotically hyperbolic manifold and D be a Dirac

operator over X. Then the resolvent R+ (}) = (D =+ix)~" extends from {R(X) > 0} to C\ (—N/2)

—1,x i’)L d __
as a finite meromorphic family of operators in ¥, Tty (X;9%). Moreover R+ (\) maps

Coo()_(;_OZ') to x)""%Coo()_(; 0%) and for all o € C®(X: %), we have [x_)\_%Ri(k)a]lx:o €
C®OX;'%5).

Proof. The proof goes along the lines of the construction of Mazzeo and Melrose [25], but we
also use arguments of Epstein, Melrose and Mendoza [7] which somehow simplify it. Since there
is no real novelty, we do not give the full details but only the important steps and additional argu-
ments to our case which are needed. First, we construct an operator Q(jt(k) € lllo_l’oo’oo()? 03
supported near the interior diagonal such that (D £ i) QQ_L () =1d - Ki(k) with Ki(k) €
lI/O_OO’OO’OO()_( : 03, thus a smooth kernel on X xo X and whose support actually does not inter-
sect the right and left boundary. Note that this can be done thanks to the ellipticity of D and it
can be chosen analytic in A, moreover notice also that Q(i M (D+£ir)—1Ide WO_OO’OO’OO (X: 02)
by standards arguments of pseudo-differential calculus. The error K i(k) is a priori not compact
on any weighted space x°L*(X; °X) so this parametrix is not sufficient for our purpose. To be
compact on such a space, it would be enough to have vanishing of the error on the front face
KS Wl =0.

Next we need to solve away the term at the front face ff, i.e., K i (L) |gr. We can use the normal
operator of D: the normal operator Ny/(D) of D at y' € dX is an operator acting on the space
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Xy :={z€ OTy/)_(, ‘i—x(z) > 0} obtained by freezing coefficients of D at y’ € 3X, when consid-
ered as polynomial in the O-vector fields xdy, xd,. Here the spinor bundle over X, is trivial, i.e.,
it is given by X,/ x OZ’y/()_() where OZ’y/(Y) is the fiber of X at the boundary point y’ € 3X.
The half-space X, equipped with the metric g frozen at y’ (the metric here is considered as a
symmetric tensor on the 0-cotangent space °7* X) is isometric to H?*! and the operator Ny (D)
corresponds to the Dirac operator on H*! using this isometry. Moreover this space is also canon-
ically identified to the interior of the front face fiber ff, with basis point p = (y, y’) € Aj. One
has from [25] that the composition (D £ iX)G+ for G4 € llfo_oo’a’ﬁ(Y; 0%) is in the calculus
Wo(X) and the restriction at the front face fiber ff p 1s given by

((D£iV)Gx)|y = Ny(D£i2).Gxlr,

which is understood as the action of the differential operator N,/ (D £ i) on the conormal distri-
bution G:tlffp on ff, >~ X /. Thus to solve away the error term at ff, it suffices to find an operator
Qli(k) in the calculus such that

Ny(D + i,\).QL(A)|ffp = Ki(k)hf,,

for all y' € 3X. This can be done smoothly in y’ by taking Qlt()\,)lffp = Ri(y/ ()\,)(Ki()\”ffp)

X,

where R, (1) is the analytically extended resolvent of N y (D £ id) >~ (Dyga+1 £ id) on

Xy x 02 (X) > H x Ox (HYT), and then defining Q') (1) to be a distribution on X xo X
X,

whose restriction to each fiber ff, is R’ ()»)(Ki M, )- As we studied above, the resolvent

RIEKM () is analytic in A and it maps C®°(H*!; 9%) to ,0)‘+% C®(H4+1; 9% if p is a boundary

defining function of the compactification of H*!, moreover the leading asymptotic term is of
— X,

the form ,0“'% Y for some Y € C®(9HI*!; OZ}F). Thus, the composition R’ ()»)(KgE M lse,)

is a conormal distribution in the class (plbprb)“%coo(ffp; End(OEy/)) and it is then possi-

| —co it 4 at+d = . L
ble to find Q2 () € ¥, (X;"¥2X) with the correct restriction at ff. Let Py denote

the canonical projection Py : 0¥ (3X) - X, (8X). The restriction of a conormal kernel in

wofoo‘o’ﬂ()_(; 05) at Ib can be considered as a section C~*°(dX x X; &) conormal to all bound-

ary faces. From the mapping property of RHHI (1) just discussed, it is possible to choose Qi )

_y—d
such that Pi[,olbA 2 QL(A)]hb = 0, which will be important for the next step. Then we get
7oo,k+%,

d _
(D£in)(QL (W) + 0L() =1d — KL () where KL (}) € pi¥, X 0:.
The final terms in the parametrix are those at the left boundary, solved away through the
indicial equation for z € C: for all ¥+ € C*®(3X;"%.)

(DN + Y ) =iz £ DTy +i(—z ATy + 0(x T, (3.6)

which is an easy consequence of (3.3). Lifting D as acting on the left variable on the space

—oo,a+%,/3+% ()—(
b

X xo X, it satisfies the same type of indicial equation: if G € Y, 05) for some

_Oo’a+%’ﬂ+% (Y

o, B €C,then (D +i))G € Y, 05 and the leading term at 1b is
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z a_d ard g
i(a =+ )‘)plb [(plb ’ G) ‘lb] +i(-a=+ )‘)Plb+2 P [(plb ’ G) ‘113] (3.7)

where the restriction at b is considered as a section C~°(3X x X; &) (conormal to all bound-
d

ary faces). Then since for o = A, the term (3.7) vanishes if PjE(,o;\_7 G)|1b =0, one clearly has

d __
Ki(k) € pir¥, Nalasaitas (X; 9%) thanks to the choice of Qi()\) and now, since @« = A + j

for j € N is not solution of the indicial equation above when A ¢ —N/2, it is possible by

S+
induction and using Borel lemma to construct a term Qi(k) € pir¥, N 2(X; 03,

holomorphic in C\ (—=N/2) such that (D + zA)Qi(A) KjE ) — Ki()») for some operator

d
K20) € patty (X 0p).

By [24, Prop. 3.29], the error term Ki (X) is now already compact on ,ozL2 for all z € [0, 00)
such that R (A) +z > 0. We can now improve the parametrix by using exactly the same arguments
as in the proof of Theorem 14.5 of Epsteln Melrose and Mendoza [7] for complex asymptotically
hyperbolic manifolds: take a kernel Qi(k) which matches to infinite order on X x X with the
formal Neumann series composition

(0L + 0L + 01 () Z K1()’

A ..
and the error term K3 1 () will now be in pg*¥, ~00.000+ (X;9%). The compositions above are

still in the calculus by Mazzeo’s composition theorem [24, Th. 3.15], but with a larger index set
at the right boundary and front face than for Z?:o Qii (1) (see the proof of Theorem 4.15 of [7]
where this is explained in full details). Now fix A such that i (1o) > O where Ri(ko) is bounded
on L2(X). Then we use a standard argument, we can add a finite rank term Qi(k) Qi(ko) €
PEY, (X D) to Qi(k) in case (Id— K3 (1)) has non-empty null space in p?L?, so that
Id — Ki (Xo) is invertible if Ki(k) =Id—(D %+ lA)(Qi(A) + Qi(k)). The operator Q.+ () :=

03 (A + Q4 (n) is bounded from p?L? to p~*L? if M(X) + z > 0 by [24, Th. 3.25], and so
Fredholm theorem proves that R+ (A) = Q1+ (A)(Id — K i )~! on the weighted space ,oZL2 for
z € [0, 00) such that R(x) + z > 0. Finally, writing (Id — K4 ())~! =1d + Ti. (1), we see that

d
Te(0) = K1)+ KL ) (d— K4 ()1 K4 (). We claim that R () € ¥ S I AN
since there are no new arguments needed, we do not give details here and refer the reader to
the proof of Theorem 4.15 in [7], we notice though that one of the points explained in [7] is to
check that the additional exponents in the index sets obtained using the composition theorem
of Mazzeo in the Neumann series of K i (A) are actually absent in R4 (A), this is based on the
adjointness properties of the resolvent for what concerns the right boundary index set and on
the properties of the normal operator for the front face index set (this however requires to add
a last term to the parametrix). The mapping property of R4 (1) acting on C®(X; X)) follows
again from Mazzeo [24, Prop. 3.28], and the fact that for all o € C‘X’(Y; 05} we have R Mo =

xk"’%ij + 05+ for some Yz € C®(dX;°X5) is a straightforward consequence of the
indicial equation (3.6). O

Let us now discuss the nature of the spectrum of D. We start by an application of Green
formula, usually called boundary pairing property (compare to [11, Prop. 3.2]).
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Lemma 3.3. Let R(A) =0 and o; = x%_)‘ai_ + x%+)‘oi+ fori=1,2 and al.jE e C®(X; %),
then if (D* + A\2)o; =r; € C®(X; %), one has

[ (orum) =t ) ave =24 [ (o707 |yl = o7 g o7 ) o
X X

where ( , ) denotes the scalar product with respect to g on X and to ho on 9X.

Proof. The proof of this lemma is straightforward by using integration by parts in {x > €} and
lettinge — 0. O

As a corollary of the resolvent extension and this lemma, we obtain the following

Corollary 3.4. On a spin asymptotically hyperbolic manifold, the extended resolvent Ry (L) =
(D i)~ is holomorphic on the imaginary line iR, consequently the spectrum of D is R and
absolutely continuous.

Proof. In view of the meromorphy of R4 (A), it clearly suffices from Stone’s formula to prove
that R+ (A) has no pole on the imaginary line. Assume Xq is such a pole with order p, then
the most singular coefficient of the Laurent expansion is a finite rank operator whose range is
made of generalized eigenspinors o solving (D + iAg)o =0 and o € xAOJ’%C"O()_(; 0%). In
particular it satisfies (D> + )»%)0’ = 0 and by applying Lemma 3.3 with o1 = 09 = o we see that
(x’)‘o’%cr) lr—o=0andsoo € x)”0+%+1C°°()_(; 0. Now from the indicial equation (3.6), this
implies 0 € C®(X; %) if A9 # 0. Then Mazzeo’s unique continuation theorem [23] says that
for a class of operators including D?, there is no eigenfunction vanishing to infinite order at the
boundary except o = 0, we deduce that 0 = 0 and thus by induction this shows that the polar
part of Laurent expansion of R(A) at A is 0. Now there remains the case Ay = 0. First from
self-adjointness of D, we easily get

Mol <D xive| (3.8)

for all & > 0 and o in the L2-Sobolev space H 1(X;9%) of order 1, and this implies that R4 (X)
has a pole of order at most 1 at A =0, i.e., one has R4+ (L) = A+A~! 4+ BL()) for some Bi())
holomorphic (these can be considered as operators from C ©(X;9%) to its dual). By (3.8), we
also see by taking A — 0 that || Ao ||;2 < |lo||;2 forall o € C*°(X; %) and so A is bounded
on L? and also maps into ker(D) by (D £ iA)R4(A) =Id. Now in view of the structure of the
kernel of Ry (}), it is not hard to check (e.g. see [13]) that the elements in the range of A4 are
harmonic spinors of the form o € x%C (X; %%, which can only be L? if the leading asymp-
totic (x_%a)|x:0 =0, ie.,ifo € x%HC"O()_(; 05, Using again the indicial equation (3.6),
we deduce that o € C*°(X;°X) and thus o =0 by Mazzeo’s unique continuation theorem, so
AL =0. O

Another corollary of Proposition 3.2 is
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Corollary 3.5. The resolvent R()) := (D> 4+ A*)~! extends meromorphically to 1 € C\ (—=N/2)
with poles of finite multiplicity, except at A = 0 where it has a simple infinite rank pole with

_2a+d d _
residue (2i)~'(R_(0) — R4 (0)). Moreover R(}) is an operator in ¥, AtaAts (X;9%) and
forany o € C®(X;°X), one has R(\)o € x)‘+%C°°()_(; 0.

Proof. The extension and the structure of R()A) are a consequence of Proposition 3.2 since
R(}) = (2iX) "' (R_(X) — R ())). As for the mapping property, this is a consequence of map-
ping properties of operators in 11/; “*(X) in [24]. The question of the simple pole at A = 0 is
also clear since Ry ()) are holomorphic at A = 0. It remains to show that the residue Iy is in-
finite rank. One way to prove it is to consider the asymptotic of ITo¢ if ¢ € Cgo()_( ; 0%). First,
both R_(0) and R4 (0) have infinite rank since DR (0) =Id on Cgo()_( : 03, but moreover if ¢
is smooth compactly supported, R+ (0)¢ has an asymptotic of the form x%wi at the boundary
where ¥4 € C*(3X; °¥) according to Proposition 3.2. If ¥4 = 0, then R4 (0)¢ = O(x3th),
and by the indicial equation (3.6) it must vanish to infinite order at 9X, which by Mazzeo’s
unique continuation theorem implies that R4 (0)¢ = 0, a contradiction. This then shows that the
range of R4 (0) on Cgo(Y : 937) does not intersect the range of R_(0) acting on the same space,
concluding the proof. O

Remark. By self-adjointness of D2, one deduces easily that R(A)* = R(}), or in terms of kernels
R(A;m, m’)* =R(A;m'\m) Vm,m' e X, m#m',

here A* € X,y X X, means the adjoint of A € X}, X X,/ if we identify the dual X with X,
via the Hermitian product induced by the metric g.

3.6. Another parametrix construction when the curvature is constant near oo

When (X, g) is asymptotically hyperbolic with constant curvature outside a compact set
(which is the case of a convex co-compact quotient X r = I'\H?t!), one may use a simplified
construction similar to that of Guillopé and Zworski [17] for the Laplacian on functions.

Indeed, there exists a covering of a neighborhood of X by open sets (U;) with isometries

tj:(Uj, 8) — (B, gga+1),

dx§ + |dyo|?

2
X0

where B := {(xo, yo) € (0, 00) X Rd,xg + Iyol2 < 1} and  gpa+1 =
We denote by B := {(xq, yo) € [0,00) x RY, x2 + |yo|* < 1} a half-ball in H'*! and 9B :=
B N {xo = 0}. We shall also use the notation ¢; for the restriction ¢ | U;nax-

Note that the function x¢ in B is not pulled-back to a boundary defining function putting the
metric g under the form g = (dx? + hy)/x?, but we have (x/tj.xo) lax = Ljfnj for some functions
nj e C>®(@ B). Through ¢, the spinor bundle on e+ pulls-back to the spinor bundle 03 (X)) U
but the splitting induced by cl(x¢dy,) does not correspond to the splitting 2, @92, except
at the boundary xo = 0, since the eigenspaces of cl(xody,) are the eigenspaces of cl(¢;, (x0x))
when restricted to the boundary.
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The Dlrac operator Dyya+1 pulls back to D in U, consequently one may choose a partition of
unity ¢ X near 9 X assomated to (Uj);, that is Z I X] = x where y € C®(X) is equal to 1

near BX . Take now x2 ;€ C oo(B) some functions which are equal to 1 on the support of x! i Let
us define qb’/'. on 9B by xj- 0, yo) = ¢>3~()’0) so that ) ; ‘7‘1’/1' =1on3X and ¢’/2'¢Jl‘ = ¢}'

The first parametrix we can use for (D2 + AZ)_I is
Ro(W) =) 05 x} Rygar1 W xjtj, + Qo(h) 3.9)
J

where Qo(X) € WO_Z;OO’OO()_( :9%) is holomorphic, compactly supported and solves (D> +
23 Qo(1) = (1 — x)Id + Ko() for some Ko()) € CP(X x X; €). Here Ljf denotes the pull-

back on sections of the spinor bundle and ¢, := (L;l)*. We obtain

(D> +2%)Ro() =1d + Y (5[ DEssr. X7 | Rt Q) x 1, + Ko().
J

The last term K((}) is clearly compact on all weighted spaces xN L2(X;9%) while the first one
is not. Since on HYt! one has

4 . -4 1 0 .
D]%Idﬂ =x; (—(xoaxo)zld +X§DRd + lX()ADRd)xO 2, A= |:0 1 :| = —i cl(xpdy,)s

in the splitting induced by cl(x(dy,). The operator [Dﬂzﬂd s x}] can be written as follows:

[DRas1+ x7] = dxo(dxxF (x0. y0)) 1d
— x5 (9%, % (x0, ¥0)) Id +x5[ Dga . X3 (x0, y0)| + ix0[ A Dga, X (x0, 0)].

Using the fact that (V Xf) x} = 0 and the expression of Ry+1(A), we deduce that

A+ +1 /A+4 = =
[Dfasr: X7 Ryari X} €xg 2 xy 2C(B x B: &)

where (xo, Yo, x(’), y(’)) are the natural coordinates on B x B. This error term can be solved away
using the indicial equation explained above for the general AH case and one can thus construct,

for all N € N, an operator Ry (L) € x“'%Hx/kCoo()? x X; &) such that
(D*+32)(Ro) + Ry(V) =T1d+ Kn(),  Ky(h) e x5 0%(X x X €)

and Ky (1) is compact on NV L2(X;0%)if0 < N < Nand R(A) > —N + N’ and R(A) > —N'.
All these terms are holomorphic in A except possibly at —N/2 where first order poles come from
the indicial equation and at A = 0 where Rpu+1(A) has an infinite rank pole. As above for the
general case, we can take an asymptotic series using Borel lemma, which gives an operator
Reo(h) € X5+ 1M 5 00X x X €), holomorphic in % ¢ —No/2 so that (D2 + 32 (Ro(A) +
Roo(L)) =1d + Koo (A) for some Koo (A) € xFx IA+g C>®(X x X; &). And again, as in the proof
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of Proposition 3.2, up to the addition of a residual finite rank term for R, (A), we can assume
that there is Ao with ®(Xg) > 0 such that Id + K (Ao) is invertible on xV L2(X ) for all N > 0.
The extended resolvent of D? + A2 is thus given by

R() = (Ro(h) + Roo (V) ([ + Koo () ',

it is finite meromorphic in C \ (—Npy/2). Moreover standard arguments show that (Id +
Koo)' = Td + Seo(3) for some Sao (1) € x®x/*T5C®(X x X £) and 50

R() — Ry (Id+5x (1) € X IH14H5 0(X x X €).

Using the composition results of Mazzeo [24, Th. 3.15], we get Ro(A)Seo(A) € (xx’))""% Cc>® ()_( X
X; &) so

R(L) — Ro(h) € X 2xM5C%(X x X &). (3.10)
Similarly, using the remark following Corollary 3.5, we deduce that the kernel
. 1 T * e 44 o0y L Y.
R(A;m,m’) — Ro(h;m',m)" e x*T2x""T2C®(X x X; &) (3.11)
where Ro(A; m’, m)* is given, by symmetry of Rya+1(A), by

Ro(A;m/,m)" = Z(tj.x}RHdH (A)X]?L,-*)(m, m') + Qo(M)*. (3.12)
j
The expressions (3.10), (3.11) and (3.12) will be very useful in what follows for obtaining an
explicit formula of the scattering operator modulo a smoothing term.

4. Scattering and Eisenstein series
4.1. Definitions and properties

Similarly to the Laplacian on functions, we can define Eisenstein series and scattering op-
erator for Dirac operator. The Eisenstein series E (1) is an operator mapping C*(3X; %) —
C>®(X;°%) and for all ¥, E(A) is a non L?-solution of (D? 4+ A%)o = 0; more precisely it is
defined using the following

Lemma4.1. Let v € C®(3X;°X), and ) € C\ (—=N/2) not a pole of R()), then there exists o €
C>®(X; %) solution of (D* + 1*)o =0, unique when (L) > 0, and such that there exist o+ €
C>®(X; %) with o lyzx=Vando = x%_)‘a_ + x%'H‘GJF. Moreover o* are meromorphic in
reC\ (=N/2).

Proof. This is essentially the same construction as for the Laplacian on functions in [11]:
using the indicial equation (3.6) and Borel lemma, it is possible to construct a spinor

Oso € x’H%COO(Y; 0, holomorphic in C \ (Z/2) such that (D* + 1*)0s = O(x*®) and
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(x’\_%ooo) |y = ¥. Note that this spinor is meromorphic in A € C with only simple poles at N/2
coming from the roots of the indicial equation. Then we can set

0 :=0x — R()»)(D2 + Az)aoo.

If A is not a pole of R(A), this solves the problem and defines o by using the mapping property
of R()) stated in Corollary 3.5. The meromorphy of o is also a consequence of the construction
and of the meromorphy of R(A). The uniqueness of the solution is due to the fact that for two
solutions &1, 05 of the problem, the indicial equation implies that o1 — o € XEC (X 05,
and then for (1) > 0 this would be L? and A would be a pole of the resolvent in the physical
plane. For 9i(A) = 0, this can be proved using an application of Green formula like in [11]:
if 61, 07 are two solutions of the problem, then the difference 61 — o7 is in x%'H‘C o ()_( ) )
by the indicial equation and it is also in the kernel of D? + A2, so we may apply Lemma 3.3
with o1 =61 — 6> and 03 := R(—A)p where ¢ € C®°(X; YY) is chosen arbitrarily. This clearly
implies that [y (61 — 62, ¢)dvy =0 and thus 61 =62. O

Remark. By uniqueness of the solution, o and o+ |;x depend linearly on .

Definition 4.2. The Eisenstein series is the operator E(1) : C*®(3X;°X) — C*®(X; %) defined
by E(A)y := o where o is the smooth spinor in Lemma 4.1.

Definition 4.3. The scattering operator S(A) : C®HX;°%) > C®BX; %) is defined by
S(MY :=0o|,x where o is the smooth spinor in Lemma 4.1.

It is rather easy to prove that the scattering operator is off-diagonal with respect to the split-
ting "X (0X) =22, (0X) ® °X_(8X). To that end, we give an alternative construction of the
Eisenstein series E(A)y when ¢ € X, or ¢ € °X_. Let us first define a useful meromorphic
function on C

YA C YY)
Ch)=2"2_2 7 4.1
) rdn (4.1)

which satisfies C(A)C(—X) = 1.

Lemma 4.4. Let € C®3X;°21), and 1 € C\ (=N/2) be not a pole of R+(X), then
there exists a unique o € C*®(X;°%) solution of (D % i\)o = 0 and such that there exist
ot e C®(X;'%) witho ™|,y =V and 0 = x2*g~ + x3**a+. Moreover one has ol % €
C®(X; OE;) and o* are meromorphic in A € C\ (—=N/2). If in addition the metric g is even,
then ai/C(k) are holomorphic in {R(X) = 0} where C(}) is the function in (4.1).

Proof. Recall the indicial equation for _(D +iA):let j e Nand L € C®(0 X:9%,) then there
exists some smooth spinor F)_; near d X such that

PTED i (Y, Yy = ixI((G=rE0P4 + 0 —j DY)+ E .
(4.2)
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Using this indicial equation inductively, we can construct for all ¥ € C*®(3X;°X.) a formal
Taylor series, and thus a true spinor 0o + € x‘“g Cc*® ()_( 0y ) by Borel lemma, such that (D £
iM)0oo + = O(x*>) and (x’\_%aoo,i) lyx = ¥. This can be done holomorphically in A as long as
A is not a root of the indicial equation (4.2). The X such that the indicial numbers j — A = X and
A — j £ A in (4.2) vanish are N/2 and they vanish only on the X'+ part of the bundle, therefore
since C (1) has first order poles at 1/2+ Ny, we see that 0,/ C (1) can be chosen holomorphically
in 1 € C\ N and that it has at most poles of order 1 at each A = k with k € N; since it does not
involve new arguments we refer the reader who needs more details to the paper of Graham and
Zworski [11] where it was studied in the case of the Laplacian on functions. Now consider the

case of a metric g even. Since A, A_ defined in (3.4) are preserved by x_% Dx% if g is even,
then clearly xk_% (Dt i)\)x_)”r% =A(— cl(xay) i) —I—x_%_Dx% also preserves both Ay, A_.In
particular, if _ = 0 in (4.2), then x>/ *!F, 5; € Ay and x?/*2F; ;41 € A_, while the converse

is true if ¥4 = 0. This implies that the spinor o + can be taken so that x*’%aoo,i e A4 and
the A which are actually solution of the indicial equation (4.2) for D £ iA are only at 1/2 4 Np.
The spinor o/ C (1) can be taken holomorphic also at A € N. It remains to set

0 =00+ — Re(\)(D £ i))ooo + 4.3)
which solves our problem, using the mapping property of R ()) stated in Proposition 3.2. O

By uniqueness, the solution in Lemma 4.4 is clearly the same as the one of Lemma 4.1 when
the initial data v is either in o4 |5 or o_|,%, which implies

Corollary 4.5. The scattering operator S(A) maps C®(0X;°X4) to C*®(9X; OZ}F).
Let us define the natural projection and inclusion
PL:C®(0X:°%) — c®(0X;°2s);  IL:C%(3X; %) — C™(3X:°X)
and also the maps corresponding to the two off-diagonal components of S(1)
S+(h) = PeS(WIy : C®(0X;°2y) — € (0X;°25),
E+(x):=EMWILPs: C®(3X;°%) — C®(X;°X).
4.2. Some relations between resolvent, scattering operator and Eisenstein series

Like for the Laplacian on functions, the Schwartz kernels of R(X), E(A) and S(}) are related
by the following

Proposition 4.6. Let ). € C be such that & ¢ —N/2 and ) not a pole of R(}), then the Schwartz
kernel E(A;m,y') and Ex+(A;m,y") in C~°(X x 0X; &) of respectively E(X) and E+()\) can
be expressed by

E(hm,y')= ZA[x’_%_)”R()»; m, x" Y]] o

Ei(him,y')= [x’_%_)\Ri()»; m,x',y')] cl(v) (4.4)

x'=0
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where we use the product decomposition (x',y') € [0, €) x dX near the boundary in the right

variable of X x X. If in addition R(A) < —%, the Schwartz kernel S(A;y,y") of S(A) is in
C%3X x 8X; &) and can be expressed by
_d_
S(sy,y) =[x E(x, v, )] o
_d_
Se(hy,y)=[x"TEx(x;x,y, y’)]‘xzo. 4.5)

Proof. Let oo be as in Lemma 4.1, then E (L)Y = 000 — R(L)(D? 4 12)0 0. The first statement
of proposition is simply obtained by integration by part in (x’, y’) of

[ R 3). (D7 4 32) o ') (5 5)
x'>e

and letting € — 0, this gives the term o, () plus a term

/ (2"~ (R (s m, 2", ¥"). Vg, 000 (5, 3)) = (Vway R(Am x', ¥'), 000 (5, ) ] o AVino-
X

But from the analysis of the resolvent R(1), we have for m € X and as x’ — 0
R(sm,x',y) =x' T (L(a:m,y) + 0(x')),

Vx’aX/R()»; m,x', y/) = <§ +k)x/%+A(L(k; m, y/) + O(x/)),
d d d
o) =3O +OW)). Ve (') = (52 () + 01))

for some L € C®(X x 9X; &) and where ¥ € C®(3X, X) is arbitrarily chosen. We can then
deduce that E(A; m, y') =2AL(A; m, y’) as distributions in C*° (X x 3X; €). Using the structure
of R(}) in Proposition 3.2, we observe that the kernel of E(A) is al_so a digribution in C~%°(X x

9X; &) since its lift to X x¢ dX is a conormal distribution on X x¢ dX, more precisely it is

P S A"y = = .
an element in ,olb+2 pg - C®(X x0dX; E). This is exactly the same argument for the E+ (1)

formula in (4.4) by using the representation (4.3) and integration by part.
Now for the scattering operator, we take R(L) < —% and use the definition of S(1)yr to deduce
that

SOyw = (x P EEMY)], .

From the fact that the lift of the kernel x_)‘_% E()\) to X X0 9X is in pff}‘_dCoo(Y X0 9X; &),
thus in C(X x 9X), we see that

/fo*%E()\; x, v, ) () dviy (¥)

X
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is C%(X; °X) and its restriction to 9 X is given by the pairing of [x_)‘_% E(L)]|x=0 with ¥, which
ends the proof for S(A). The argument is the same for S+ (A). O

In the same way as E(A), we define the operator E ), Ei (A) so that the Schwartz kernels
of Eﬂ()»), Ei(k) are given for A € C\ (—N/2) not a pole of R(A) by

Eu()\; y,m’) = ZA[x_’\_%R(A; X, y,m')]|

x=0’

EL(hy,m') = —cl(v)[x*A*%Ri()»; x,y.,m)]| (4.6)

x=0

using the product decomposition [0, €), x X near 3 X. Like for the analysis of the kernel of E(2)
above, the structure of the kernel E*(1) on the blow-up X x( X is clear from the analysis

of R()). Note also that Eft (1) maps C‘oo()?; 0%)to C®(AX; %) by using Corollary 3.5 and
(E20)0) == cl(o) lim [ 375 Ra (3 x, v ) o) v (o)
x—
X

We see also from the remark following Corollary 3.5 that
E*(A;y,m)=E(Mm',y)", Ei(i;y,m’):E;(k; m',y)* 4.7)
when these are considered as linear maps from X,/ to OZ‘y.

Lemma 4.7. Let m, m’ € X, then for A & 7./2 neither a pole of R()A) nor of R(—1), we have

R(k;m,m’)—R(—A;m,m’)=(ZA)_I/E(A;m,y)Et(—A;y,m’) dv, (),

X

Ri(Aim,m') — Re(=A;m,m') = — / Ex(h;m,y) cl(v)EEF(—)»; y,m')dvy, (y)  (4.8)

X

or in terms of operators

R = R(=2)= Q) 'EME (=2),  Re() — Re(—2) = —E+ (W) cl(n) EL(=2).

Proof. This is a straightforward application of Green formula and does not involve anything
more than in the proof given by Guillopé [16] for the Laplacian on functions on a surface. It
is based on the fact that (D% + A2)R(A;m, m’) = (D? + A2)R(=i;m,m’) = §(m — m’) and
(D £iAM)Re(A;m,m') = (D £iX)Ry(—A;m,m") =8(m — m'), where §(m — m') denotes the
Dirac mass on the diagonal. O

A corollary of this is some functional equations relating E (1), E*(1) and S(1).
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Corollary 4.8. The following meromorphic identities hold

EQ)=E(=0SQ),  E*()=SOWE (-1,
Ex() = E<(-)Ss().  EL()= Si(x)Ei(—u.

Proof. Let us consider the second identity: assume M (1) < —%, it suffices to multiply the first

line of (4.8) by x(m)_k_% and take the limit as x (m) — 0 when m' € X is fixed, the limit makes
sense in view of our analysis of the Schwartz kernels of R(1), E(A), E*(1) and S(1). Then we
use Proposition 4.6 and the deﬁnition of E%()) and this gives the proof of the second identity of
the corollary, at least for R(A) < —5 4 but this extends meromorphically to A € C. The proofs of
other identities are similar. [

4.3. Properties of S(A)

Proposition 4.9. For A such that f(L) < —%, A ¢ —N/2 and A not a pole of R(L), the operator
S()) is a classical pseudo-differential operator on dX of order 2, with principal symbol

(=2 +1/2)

opr(S(A))(S)_C()»)cl(v)|$|2)‘ Yicl(g), withC(\):=2" ST

4.9)

Moreover S(1) can be meromorphically extended to C\ (=N/2) as a family of pseudo-
differential operators in W (3X;°X).

Proof. Let 3 : X X0 X — X x X be the blow-down map, X X0 X :=[0X,0X, Ay] be the
blow-up of 3X x X around the diagonal Ay and B : dX xo dX the associated blow-down map.
Then the expression (4.5) can also be written for (L) < —% (S(A) and R(A) denote also the
Schwartz kernel)

i

S(A) = 2ABy, (B*((xx") %R(A)) ylbmb) (4.10)

where 1b N rb is naturally identified with 0X X0 89X . For more details, we refer to the article of
Joshi and S4 Barreto [19] which deals with the Laplacian on functions. Now using the fact that

R\ ey, 20+ HZ(X 03, we deduce that

() 72ROI) |y, € P C®OX %0 0K: ©)

where pff 5 1= pffhbmrb is a boundary defining function of the boundary (i.e., the face obtained by
blowing-up) of X x( dX. This shows that the kernel S(1) is Classwally (or polyhomogeneous)
conormal to the diagonal and the leading singularity at y = y' = p given in polar coordinates in
the conormal bundle is given by

y—=y
ly =yl

Sy, y) ~ ey =y [ U, (p), P = e 5!
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for some c(A) € C and where U, ( p)e End(°X® » (X)) denote the limit of the parallel transport
U (ep, m) in the fiber ff,, when m — p €lbnrb Nif, ~ gd-1 (here e, is the center of ff, defined
by the intersection of the interior diagonal with ff;, and identified with the center of hyperbolic
space). Thus we obtain S(1) € w24 (3X; %), moreover the expression (4.10) can be meromor-
phically extended to C \ (—N/2) as a distribution classically conormal to the diagonal, thus as
a family S(A) € w24 (3X;9%). As for the principal symbol, we use the expression of U, (p")
for H*! given in Corollary 8.5 and Fourier transform to obtain (4.9). Notice that there might
be first order poles of infinite multiplicity at N/2 coming from the meromorphic extension of
the distribution |y — y’|***/ to A € C. This phenomenon is described in [11] for the case of the
Laplacian on functions. O

Like for functions, the scattering operator is a unitary operator on the continuous spectrum
and satisfies a functional equation.

Lemma 4.10. The operator S(}) is unitary on {N(X) = 0}, it satisfies S(A)S(—A) =1d for A
such that S(£2) is defined, and it is conformally covariant in the sense that for another choice
X = e“x of geodesic boundary defining function, the corresponding scattering operator is S(A) =

d d
e (5N (1) 5N, \where wy = ol 3.

Proof. The functional equation is a straightforward consequence of the uniqueness in Lemma 4.1
or the first equality of Corollary 4.8. The unitarity follows easily from Lemma 3.3 by taking
the solutions o1, 0o of Lemma 4.1 for two initial data y{, Y, € C OO(E))_( Oy ). The conformal
covariance of S(1) is straightforward by using the uniqueness of the solution in Lemma 4.1. O

Corollary 4.11. If the metric g is even in the sense of (3.2), the operator g(k) =SA)/CA) is
finite meromorphic in C, and it is holomorphic in {R(}) > 0}.

Proof. The analyticity in the right half-plane is a consequence of the last statement in Lemma 4.4
and the fact that S(A)y = 0+|3§ with the notation of this lemma. We already know the mero-
morphic extension outside —N/2 so we can write, using Proposition 4.9,

S()/C () =cl(W)(Dpy + i) (1Dpyl + 1)ZH (Id+ K())

for some K (A) compact on L2(8)_(; OZ‘) and analytic in {J1(A) > 0}. We know from Lemma 4.10
that Id + K (&) is invertible for almost all A € C, so we may use Fredholm analytic theorem to
show that (S(1)/C(1))~! is a meromorphic family of operators with poles of finite multiplicity
at most in NR(A) > 0, so by the functional equation in Lemma 4.10, we deduce that S(A)/C () is
meromorphic in R(L) < 0 with poles of finite multiplicity. O

We give another corollary of the properties of S().

Corollary 4.12. For an AH manifold with a metric g even in the sense of (3.2), the resolvent
R () is finite meromorphic.

Proof. According to Proposition 3.2, the only problem for the meromorphy of R4 (A) can be at
—N/2, so consider the half-plane {i(1) < 0}. Since R(—1), E(—A), E*(—=A) are holomorphic
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in {N(A) < 0}, the result is a straightforward consequence of Corollary 4.11 together with the
formula

ROV =R(=X) + QN 'COYE(=N) ((M)Eﬁ( 2,

itself a consequence of Lemma 4.7 and Corollary 4.8. O
4.4. Representation of E(A) and S(}) in the case X

Using Proposition 4.6 and (3.10), we obtain directly an explicit representation modulo a
smoothing term. We use the functions 7;, ¢}, X} of Section 3.6. We denote by Sp+1(A) and
Epa+1 (1) the scattering operator and Eisenstein series on H*!, defined using a defining func-

tion of dH4+! which is equal to xo on the half-ball B in the model H*! = {(xo, yo) €
(0, 00) x R4~} je., in terms of distribution kernel on B x 9B and on 9B x B

=g
Epa+i (A; X0, Y0, y(’)) = Z)L[x(/) M3 Rya+1 ()»; X0, Y0, X0 Y(/))]x6=0’
Sga1 (33 yo, o) =[x o_k__EHd“()‘ %0, 30 50) ] y=0-

Lemma 4.13. If A € C\ (—Ng/2) is not a pole of R(}), then the Eisenstein series E()\) for D2
on a convex co-compact quotient X := F\Hd‘H has the kernel E(L) = Eq(L) + Eco(A) where

-4
Eo()) :=th)(]2EHd+1(k)¢]l-nj 24
j

Ec() = 20 "3 (R() — RoMW)] |,y € X5 C¥(X x 3X; €).

Similarly, the scattering operator S()) for D? on X has the kernel S()) = So(A) + Soo(X) where
S }\‘ P * _)‘_% 2S )\4 1 _)"_% .
0( )'—Z‘j’?j ¢j -+ ( )¢’j’7./ Ljys
j

_y—4d — _
Seo) = 24[(xx") T2 (R() — RoW)]|,_,_ € CX(OX x 3X; &).
5. Selberg zeta function of odd type
In this section, we will assume that the dimension d 4+ 1 = 2n 4 1 is odd except in Lemma 5.2.

5.1. Odd heat kernel of Dirac operator on Hét!

.2

By the identification (2.4), the kernel of the odd heat operator Dya+1e Pyast on L2(HAH!,

») (Hd‘H)) can be considered as a t4-radial function P, over G. Hence there exists a function P;
from G to End(V,) satisfying the K -equivariance condition

P (k1gka) = ta (ko) ' P (g)ta(k)™" forg e G ki, ko e K (5.1)
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such that
D2, -1
Dyarie utl(gK, hK)=P/(h~'g) forg heG. (5.2)

Let us remark that P, (h~! g) and P; (kl_lh’1 gko) for k1, ko € K give the same map by the condi-
tion (5.1), so that the right hand side of (5.2) does not depend on the choice of the representatives
of the K -cosets.

Recalling the Cartan decomposition G = KATK with A" := {a, = exp(rH) | r > 0}, any
element g € G can be written as g = ha,k where a, = exp(r H) and r is the same as the hyper-
bolic distance ds+1 (e K, gK) between two points eK and gK in H*+! = G /K . Here e denotes
the identity element in G. Now let us recall that the spin representation t; decomposes into two
half-spin representations o, o_ when restricting to M = Spin(d),

Tilm =04 Do_,

hence the representation space V7, also decomposes into V,+ @ V- as M-representation spaces.
By Schur’s lemma there exists a function p,jt :R — C such that

Pi(ap)ly,, = pi () 1dy,,

where a, € AT, As in the proof of Theorem 8.5 of [6] using Theorem 8.3 of [6], one can easily
derive

. —tD? .
Proposition 5.1. The scalar components of Dya+1e a1 gre given by

sinh(r/2) r _2
TR (n 4 3/2)52 \d(coshry ) S (/e (5-3)

pEr =+

_ 2
Let us observe that the equalities (5.1) and (5.3) determine the odd heat kernel Dya+1e Dy
by the Cartan decomposition G = KA1K.

5.2. 0dd heat kernels over convex co-compact hyperbolic manifolds

By abuse of notation, g, i will also denote the points in H*! corresponding to the cosets

gK,hK in G/K. By a usual construction, the kernel of the odd heat operator De™’ D? over Xr
is given (as an automorphic kernel) by

2
D™ (g. ) = ) Dygasie” "Vttt (g, yh) (5.4)
yel’

where g, h denote points in X = I'\H¢t! which we view as a fundamental domain in H? !
with sides identified through I". Using dpa+1(g, h) = dya+1(e, g~ 'h) where e denotes the origin
in the unit disc model of H¢+!, then by (5.1), (5.3) and some elementary calculations, we have
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_ 2 3 d r (g,h)2 .
| Dgasre™ Pt (g y )| < Crm2em @5 NN e ik (5.5)

0<j<n+l1
0<k<n

Here C is a positive constant independent of ¢ and r, (g, h) := dya+1 (g, yh). In particular the
number 7, (g, g) is independent of g in the axis of y and is called the translation length of y,
denoted by £,,.

Lemma 5.2. Let F be a fundamental domain of I' and X be a boundary defining function of X
which we view as well as a function on F. There are positive constants Cy, Cy such that for all
y € I' with translation length £, > Cy and all g, h € T,

e @M L Cre v 3 (9)x (h).

Proof. By conjugating by an isometry of H?*!, we can assume that, in the half-space model
HA+! = R} x R‘){, the point at oo is not in the limit set A(I") of the group I". Then, since the
group is convex co-compact, there exists a fundamental domain F which satisfies the following:
there exist C > 0 and € > 0 such that

FUAT) C B:={z€[0,00) x RY; 2] < C, dewer(z; A(I)) > €]

where deyc denotes the Euclidean distance in R?*!. Notice that the function X is comparable to
the function x on JF in the sense that 1/A < xX/x < A for some constant A > 0. Let now y € I"
be an isometry, whose fixed points p;,, plz, must belong to Rg N B. Composing a translation
>z —( p)l, + pf,) /2 with a rotation in the R;’, variable, we define an isometry g,, which maps
le/ to py, := (0, |p11/ — p}z, [/2,0,...,0) and p)z, to — p,, . Notice that, since g, is also an Euclidean
isometry, then

gy (F) C B’ :={z €[0,00) x R?; 2] < 2C, dewer (z; £py) > €}

We identify the (x, y;) half-plane inside H*! with H? by setting zo := y; + ix, in particular
£p, belong to the boundary of H?2. We consider the isometry sy of H? defined by

20+ py

. (5.6
—20+ py

Sy 20—

This isometry maps p, to o0 and —p, to 0 in H*!. We extend s, recursively to H*! as
follows: the isometry s, of HF is extended to an isometry of H¥*! by identifying H¥*! with
(0, 7)p x HF via the map

(0, %, y1, ..., Yk—1) > (x8inb, y1, ..., Yk—1, X cos0)

and defining the extension, still denoted sy, by sy, (k(6, w)) := (,(8,s,(w)). Note that
|tk (0, w)| = |w]| for each k, and thus |sy, (20, y2, ..., Ya)| = |sy (z0)|. Using this fact and the
explicit formula (5.6) in H?, it is easy to see that for all z € B/, we have



C. Guillarmou et al. / Advances in Mathematics 225 (2010) 2464-2516 2491
€ 4C
S |SV(Z)| < e

We conclude that t,, :=s,, o g, maps F into {z € Rt xR?, ¢ < |z] < e~} for some & > 0 which
does not depend on y. But#, 0 y o 1, ! is an isometry fixing the line {y = 0} and thus it can be
written under the form

tyoyo ty_l (L, y) el (x, Oy(y))

for some O, € SO(d) where ¢, is the translation length of y. Then we have for m = (x, y),
m’ = (x, y") in the half-space model

2 /2
coshz(de+1(m,m’)/2)= ly = ¥'17 + |x + x|

dxx’

and by writing #, ¢ = (x, y) and t,h = (x’, y’) in the half-space model,

le=y — 0, ()I* + le trx +x')?

/

cosh?(ry, (g, h)/2) = '

4xx -7)

But since t, g, 1,h € t,(F), one has & < (x2+ |y|2)% < e~ ! and the same for (x’, y’), which
from (5.7) implies that

&2 < cosh® (ry (g, h)/2)e_eyxx’ <e? (5.8)

for £, large enough (depending only on ¢). Observe now that, using the embeddings H?
... C HY*! as above using the maps ¢, we can view the point py as an element of (the
boundary of) each H* for k =2,...,d + 1. Moreover, as Euclidean norms, one clearly has
[t (@, @) — pyl=|w — py| forall w e HF, and thus |z — Pyl =1z0 — py| where z € H*+! cor-
responds to a unique (61, ...,64—1,20) € (0, Jr)d’1 x H? by the maps t; described above. Let
us denote Im(z) := x when z = (x, y1, ..., yg) € H?*t!, then each z € HY*t! is associated to
a unique (A1, ...,64-1,20) € (0, 7'r)d_1 x H? by the maps ¢ (here zp is a complex coordinate
on H? viewed as the half-space Im(zg) > 0) and we have Im(z) = Im(zg) sin(6;) . ..sin(64_1)
and Im(sy (z)) = Im(sy (z0)) sin(fy) .. .sin(6y—1) by construction of s, acting on H"*+!. But a
short computation gives

Im(zo) Im(z0)

Im(sy (ZO)) 2py 170 — py|2 Py Iz — py|2

where p, € H? is viewed as a positive real number in C, which therefore implies Im(s,, (z))/
Im(z) =2p,/|z — py |2 for all z € H?*!. We have also shown that inf,eq, (9) |2 — pyl > € and
0 < py < 1/e for some € > 0 uniform in y € I" by convex co-compactness of I", thus we can
combine this with (5.8) and the fact that x o g, = x where x is comparable to X on J to deduce
that there exists a constant C > 0 uniform in y so that (x o #,)/X < C on JF. This ends the
proof. O
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By (1.2), (5.5) and Lemma 5.2, we get that the right hand side of (5.4) converges uniformly
in g, h in a fundamental domain. We denote by tr the local trace over Ox., (Xr)= Vg, form in
a fundamental domain of I".

Proposition 5.3. For m in a fundamental domain of I", we have

tr(De”Dz)(m) = Z tr(DHdﬂeftDiﬂd“)(m, ym). 5.9
yel'\{e}

2
Proof. It is enough to show that tr(Dp+1e *Dyi1 )(m,m) =0, which is a consequence of

.2
tr(Dggarie” Y541 ) m, m) = tr(P;) (e) = d(01) (p; (0) + p; (0)) =0
where d(o+) denotes the dimension of V,, and the last equality follows from (5.3). O

By Eqgs. (5.5), (5.7) and Proposition 5.3, we deduce that there is € > 0 such that

‘tr(De—sz)(m)‘ < Ce (t)x(m)Z(%-i-e) Z o~ (d+ory
yel\{e}

where Cc(¢) is a constant depending only on €, f and x a boundary defining function. Hence the
local trace function tr(De™* DZ)(m, m) is integrable over X . Now we can define

Tr(De 'P’) = / tr(De™"P) (m) dv(m) (5.10)

Xr

where dv(m) denotes the metric over X induced from the hyperbolic metric dvyga+1.

By our assumption on I', I" \ {e} consists of hyperbolic elements and decomposes into
I'-conjugacy classes of hyperbolic elements. We denote by I}y, the set of I'-conjugacy classes
of hyperbolic elements. Each element [y ] in the set Iy, corresponds to a closed geodesic C)
in X . We denote by /(C, ) the length of C,, and by j (y) the positive integer such that y = yoj »
with a primitive yp. A primitive hyperbolic element y means that it can not be given by a power
of any other elements in I”, so that I"-conjugacy class of a primitive y corresponds to a prime
geodesic C), in X . The trace of the monodromy in X (X ) = I'\(G X, V¢,) along a closed
geodesic Cy, is given by x,, (my) + xo_(m,) since any hyperbolic element y can be conjugated
to mya, € MA™T. A closed geodesic C,, corresponds to a fixed point of the geodesic flow on the
unit sphere bundle over X . The Poincaré map P(C, ) is the differential of the geodesic flow
at C,, which is given by P(Cy) = Ad(ma,) if y =m, a, . The unit sphere bundle SX of X
is given by I'\G /M, and its tangent bundle 7' SX i is given by

TSXr=I'\G xy "W®adn)
where n =6 (n) and M acts on 1 ® a @ n by the adjoint action Ad. Hence P(C, ) preserves the

decomposition n @ a®n. We denote by P(Cy)|n, P(C,)|5 its restriction to n, i part respectively.
Now we put
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D(y) := |det(P(C,)lnga — 1d)|"/* = e |det(P(Cy )| — 1d)]
= ") det(ld - P(C))la)- (5.11)

Proposition 5.4. The following identity holds

oy 2ri 1(C,)? 1Cy)?
Te(De™"P") = Y (Xor (my) = Xo_(my))e™ # . (5.12)

 4n)? S AAOL¢D)

Proof. By equalities (5.2), (5.9) and (5.10),

Tr(De—tDz): Z /trPt(g_lyg)d(Fg). (5.13)
)/EF\{E}F\G

By Theorem 2.2 in [27], the scalar function p;(g) := tr P;(g) is in the Harish-Chandra Ll—space.
(Note that p;(g) should not be confused with p;t (r) in Section 5.1.) Hence we can follow the
well-known path of Selberg on pp. 63—-66 of his famous paper [32] to obtain

> / pi(e7've)d(Mg) =Y volIy\Gy) / pi(e7've)d(Gyg) (5.14)

vel'\lel r\g [v1€lhyp G,\G

where I',, G,, denote the centralizer of y in I" and G respectively. Now we show the following
equality

2mi 1(Cy)? e
(4mr)? j(J/)Iy)(y)(XU+(’”V)—Xa,(my))e e

vol(I\G,) / pils ' yg)d(Gyg) =
G\G
(5.15)

We may assume that a hyperbolic element y € I has the form my,a, € MAT.If y € MAT,

/ pi(g'vg)d(G,g) =vol(G,/A)™ / pi(gvg ") d(gA). (5.16)
Gy\G G/A
We also have
/ pi(gve™")d(gA) = D(y) ' Fp,(myay) (5.17)
G/A

where the Abel transform of p; is given by

Fpr(myay)=a5f/pt(kmyaynk_l)dkdn
N K
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with a,‘,) =exp(nl(Cy)). By Theorem 6.2 in [35], we have

G)g,k(pt)zf / Fpt(mexp(rH))tra(m)e”‘rdrdm. (5.18)
M =0

Here ®; ) (p;) is defined by
Oc 3 (pr) :=Trrs 2 (pr) = Tr/ ()7 (g)dg
G

and for (o, Hy;) € M (where M denotes the set of equivalence classes of irreducible'unitary
representations of M) and A € af. the principal representation 7, ; := Indf,, anv(o® e ®1d)
of G acts on the space

Hop:={f:G —> Hy | f(xman) =a~ P Pom)~ f(x), flx € L*(K)}

by the left translation 7,5 (g) f (x) = f (g~ 'x). Applying the Fourier inversion theorem and the
Peter—Weyl theorem to the equality (5.18), we get

o0
1 .
Fp (myay) = X;tm(my)g / Qo (pr)e HED gy, (5.19)
oeM —00

Now let us observe that &, , (p;) vanishes unless o = o4 since 74|y = o4 @ o_. Moreover, we
have

O, 1(pr) = 2™ (5.20)

as in Proposition 3.1 in [29] by (4.5) in [28]. Note that the analysis for this does not depend
on I, but is performed over G. Combining (5.16), (5.17), (5.19), (5.20) and observing that
vol(I',)\G, )/ vol(G, /A) =1(Cy)/j(y), we conclude

vol(I3\Gy) pi(e~'ve)d(Gyg) = Mi Op 5. (W) 1™ g,
= J)D(y) 2m

Gy\G o€ —00

_ l(Cy)(Xof (my) — Xo_— (my)) L / ke_’)“zeil(CV))‘ da
J)D(y) 27

—00

_ 210 UG (o, (my) = o (my)) _1cp?
() j)D(y) '

Taking the sum over [y] € Ty of this equality and by (5.13) and (5.14), we obtain (5.12). O

From Proposition 5.4, putting ¢ := miny e, /(Cy) > 0 we obtain the
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Corollary 5.5. The following estimate holds
Tr(De_’Dz) = O(e_cz/t) ast —> 0.
5.3. Selberg zeta function of odd type

We define the Selberg zeta functions attached to half-spinor representations o4 by

Xor(my) i ))
Zr(og, X)) = exp<— e (5.21)
ety 4 VP

for M(A) > 8y — n. It is easy to see that Zy (o4, L) absolutely converges for R(A) > 6 — n
by (1.2).

Proposition 5.6. For (L) > 6y —n,

o0
Zr(og, ) = ]_[ ]_[ det(Id — o4 (my) ® S*(P(C,y)|z)e” *TmIEN) (5.22)
[y 1€P Fhnyp k=0

where Plhy, is the set of I'-conjugacy classes of primitive hyperbolic elements, and for an en-

domorphism L -V — V, SK(L) denotes the action of L on the symmetric tensor product VS‘%!;.

Proof. It is easy to see that log of the right hand side (5.22) is the same as

oo
Z Z trlog(Id —ox(my) ® sk (P(Cy)|ﬁ)e—(>~+n)l(cy))
[y 1€P iy k=0

=— > 33 i t(oslmy) ® S (P(Cy)lg)e” *FIIEN)]

[Y1€PThyp k=0 j=1
o0
== > Y i r(osmy) u(SH(P(Cy)lg))e HHIE)
[¥1€Thyp k=0

- 1 -
== Z J() ' det(ld — P(C))I5) " tr(ow(my))e” PTG,
[y1€Thyp

Now these equalities complete the proof if we use (5.11). O

The Selberg zeta function of odd type is defined by

Z JA
Zr s = % for R(A) > ér —n. (5.23)

Note that the definition in (5.23) is shifted by —n from the one in [27,29]. From this definition,
the following equality follows easily
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BlogZf (M= Y UCYjW) ' D& (Xoy (my) = xo_(my))e ™. (5.24)
[v1€lhyp

By Proposition 5.4, and from the identity

o0 Ar
r2 -
/e_mz (@rt) 2e T di="— forM(22) >0,
4y
0

we have

Corollary 5.7. For A such that ®(A) > 8 — n and R(2) >0,
g .
/ e Tr(De D) di = %ax log Z{: 5 (1). (5.25)
0

Let us define the function w; on the fundamental domain Xy by

wy(m) := e[ DR(A; m,m") — DRyas1 (s m, m") ] (5.26)

m=m’
where Rpe+1(A) is the meromorphic extension of the resolvent of Déld +1- The kernel of
D(R(A) — Rya+1 (1)) is smooth in X x X and, since the function w,, is automorphic on e+
with respect to I', it induces a smooth function on X x X. From the analysis of the resolvent
above, we see that w; is in x2*T4C % (X) and thus integrable when (1) > 0; moreover it is
meromorphic in C. By reversing the order of integration and trace in (5.25), we can write for
NA) > max(§;p —n, 0)

aAZIO",E ()\)

3. 1og Z% «(A) =

=-2i / w;) (m) dv(m) 5.27)

Xr
and the integral of w, (m) can be decomposed under the form f N and f < for some boundary
defining function x, so that it can be decomposed under the sum of a meromorphic function of A
and of

€0

20—1 7/

lin%) X7 W) (x, ) dx dvg (y)
€—>

€

for some a)& smooth and meromorphic in L. As € — 0, this has an expansion of the form A(A) +
Z?":O €?+JC (1) for some meromorphic C; (1), A(1), and for (1) > max(§; —n, 0) we have

(5.27) which is equal to A(A) + [, w; (m) dv(m). This shows

(m)>eq

Lemma 5.8. The function 0, Z{. 5. (A)/ Z}. 5. () has a meromorphic extension to C given by the
value
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7Z 5 (3)

700 — —2iFP._g / w; (m) dv(m)

x(m)>e

where FP._.o means the finite part as € — 0, that is the constant coefficient in the expansion in
powers of €, and wy, is given in (5.26).

In addition, using that tr[ D Ryar1(A; m, m") — D Rygav1 (—A; m, m')]y—p = 0 for all A € C,
we obtain
NZf 5 () 3 0.2 5 (=2)
Z?‘,Z()‘) Z?‘,E(_)‘)

— —2iFP._g / a[DI (i m,m')], _  dvim) (5.28)

x(m)>e
where IT(L; m,m’) := R(A;m,m’) — R(—A; m,m’).
6. Spectral side of trace formula, Maass—Selberg relation

With the only exception of Theorem 6.9, the dimension d + 1 in this section can be either
odd or even, and X can be any asymptotically hyperbolic manifold with constant curvature near
infinity. By convention, if J(A) is an operator depending on A, we shall use the following notation
throughout the section

n (A +1/2)

JR)=JW/CR),  with CO) =27 7=

where the function C (1), already introduced in (4.9), satisfies C(A)C(—1) = 1.
6.1. The Maass—Selberg relation

We now describe the Maass—Selberg relation in order to study the singularities of the odd
Selberg zeta function in terms of scattering data.

A corollary of Lemma 4.7 is that the kernel of I7(X) := R(X) — R(—A) is smooth on X x X.
Actually, in the Mazzeo—Melrose construction described before, one can choose the same term
Qo(A) for the parametrix of R(L) and R(—A), proving directly that I7(X) is the sum of a

term whose lift under S is smooth on X xo Y\ (Ib U rb) with a term in (xx’)“’%COO(Y X
X; &)+ (xx’)_)‘+% Coo()_( x X; €). The local trace of I7(}), i.e., the trace of the endomorphism

IT(X; m,m), satisfies

tr(IT(h; m, m)) € C°(X) + x4 C®(X) +x~ T C>(X).

From the composition properties of ¥;"**(X; °X) in Mazzeo [24], the operator! DIT(A) has a
kernel which has the exact same properties as I7(A) and thus its local trace satisfies

tr((DIT)(h; m, m)) € C(X) + x4 C>(X) +x~ 1 C®(X). (6.1)

1 The notation DIT should not be confused with the usual notation d 7T for the spectral measure!
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Lemma 6.1. Let € > 0 and ) € C neither a pole of R(X) nor of R(—A), then

/ tr(DIT)(A; m, m) dvg (m)

x(m)>e
—d
= —ET / /tr(cl(v)B;LE()u; x,y, y/)Eﬁ(—)L; y, x, y)) dvy, (y/) dv, ().
x(m)=e yx

Proof. First observe that
DE(\) = —AE) cl(v), E*(—A)D = —rcl()EH (=)

which is a consequence of Lemma 4.4 and the remark that follows. Then we get for small r € C
1, ~ ~ ~ ~ 1~ ~
5 (DEC.+ HE (=) — E.+1)(E*(=1)D)) = —5EG.+1) cl(W)E*(—).

From Lemma 4.7, the limit as + — O on the right hand side is —%E(A) Cl(V)Ej(_)\.) = DII(}),
which by taking the local trace and using the fact that tr(AB) = tr(BA) gives

. im L (B E ol E
tr(DIT(h;m, m)) =t11_r)r(1)Ztr(E (=N)DEM+1)(m,m) — (E*(—=A\)D)E(x +t)(m, m)).

In particular, remark that the local trace on the right hand side has to vanish at + =0, which will
be used in the last equality below. We use this expression and Green’s formula on {x(m) > €} in
the dv, (m) integral to get

/ tr(DIY(A; m, m)) dvg(m)
x(m)>e

o ~ ~
“tim [ [ o DEG )
dX x(m)>e€

— (E*(=0)D)(y',m)E(A +t;m, y')] dve(m) dviy (')

N lin(l)% / /tr(ij(—k; y', m) cl(v)E(k +13m,y")) dviy () dvi, ()
t—
x(m)=e€ yx

7d - -
= —ET / / tr(Eﬁ(—)»; ¥ m) ()3, E (ki m, y')) vy () dvi, ().
x(m)=€ 9x

The lemma is proved using the cyclicity of the local trace once again. O

We now consider the limit of the expression in Lemma 6.1 as € — 0. For that we introduce
the representation of £ (1) given in Lemma 4.13 and a similar one for E*(A): E#(A) = Eg A) +

Ego (1) obtained by restricting (3.12) times x(m)’)"% at m € 39X and using (3.11), that is
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=hyy . w1 —h—§ =1 2
E§0y =) viein, " 2 Efun 0Xit,
J

EL () i=22[x 2 (R0) — B5(0)],_y € T2 C¥(0X x X; &) 6.2)
where again E];Id +1(A) is the corresponding operator on H*! like in Lemma 4.13 and
Rg(k) := Ro(1)*. Notice that, using the same arguments as in (4.7), we obtain Eg(k; y,m) =
Eo(x; m, y)*. Similarly we have S() = S5() + S (%) with

S a4~ _—d
Sé(k)::chfqb}nj 2Sgen ;2 o3,
j

85 () 1= 22[xx' T (R — RE)] € C®OX x 3X; &) (6.3)

x=x"=0

and §Hd+1 () is the operator on H?*! like in Lemma 4.13. Then we can prove

Proposition 6.2. The meromorphic identity holds in A € C,

/ tr(DH(k; m, m)) dvg (m)

x(m)>e€
e > Ay it ’
=-— / /[tr(cl(v)BAE()\;x,y,y)Eoo(—k;y ,x,y))
x(m)=e€ 3xX
+tr(cl ()83 Eoo (33 x, v, ¥) Eg (=21 ¥, x, ¥)) ] dVig (') dva, () (6.4)

where tr means the local trace on End(°X).

Proof. The point is to prove the vanishing of

tr(cl(v)dy Eo(2; x, v, y/)Eg(—)»; y.x,y))

so we use the explicit formula for E()()\.) and ES(A) given in Lemma 4.13 and (6.2). We have to
deal with terms of the form

A—< =g ~
Z)ka@l”k ’ E];Idﬂ (=W)X tks (m, m)) 6.5)

(e (X )0 (X} Eggar )0
where yjx is the unique isometry of H?*! extending ¢ o L;l LUk NU;j) = w(Ur N U;) (and
which acts smoothly up to the boundary) and X is the vector field X; :=¢; (v). We use the
fact that ){;‘kRHd+1 (A) = Rya+1 ()»))(;‘k since yji is an isometry so if o j; 1= [X;‘k(xo)/xoﬂxo:o €

P . .
C*®(R?), then one deduces that )(;‘kEHj_Hd+1 (=A) = oy 2 E%Idﬂ (_)‘)ka Let us consider (6.5), it
can be written as
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Ajk ()‘-’ X0, Y0, y())
= X3 (x0, y0) x£ (vjx (X0, 30))

~ a4 ~
x tr(el(X ) [ Eggar (% x0, yo. 9) 15 (76) ™ 2187 (s 36) Efgr (=23 ¥ x0. 30))

where 1} (m) = (xo, yo) and Bjx(h: y) = 1, ()"~ 2} (v)b} (vjic(y')). We shall show that A
vanishes for algebraic reasons. First we recall from (2.5) that

d
2

~ _y_d
Eggar (03 x0, 0, 9) = FOIxg 2 (52 + |0 — ) 72U ((x0, y0), ¥)

and a similar expression for E]%Id +1, here U is the parallel transport on H*! extended to the
boundary (see Appendix A) and f(}) some explicit meromorphic function. Thus using the fact
that U (mo, y;)U (y(. mo) =1Id, A j; can be written under the form

Ajk (A mo, y) = bjk(x; mo, yg) tr(cl(X U (mo, yo)U (yh, mo)) = bjr (x; mo, yp) tr(cl(X )
for some b j; where mg = (xo, yo). But since the dimension d > 1, the trace vanishes. O
We deduce from this formula

Proposition 6.3. For A € C not a pole of S(1) and S(—A), the right hand side term in Proposi-
tion 6.2 has a limit as € — 0, given by

lin}) tr(DIT(A; m, m)) dvg (m)
€E—>
x(m)>e

1 ~ o~ ~ ~
= =3 (@) [3: 5055 (=) + 38 ISH-1)). (6.6)
where Tr denotes the trace for trace-class operators.

Proof. First when d + 1 is odd, we know from the discussion before Lemma 5.8 that the term
(6.4) has an expansion as € — 0 of the form A(A) + Y52, € >/ C; () + X 720e? T CT ()
for some meromorphic functions A(A), ij.t (1). But actually the same result holds for the general
AH manifolds where the metric has constant curvature near co and d + 1 odd or even: indeed,
using the parametrix (3.10) and the fact that the local trace tr(D(Rya+1 (A) — Rya+1(—21))) van-
ishes as explained in the remark following Proposition 2.1, it is clear that tr(DI1(x; m,m)) is a
function in the class x?*C®(X) 4+ x ~2*C>®(X). Let us then take the limit as € — 0 in (6.4). For
instance consider

x4 tr(cl(v)a,\i()»; Xy, y’)Ego(—?»; v, x,y)),

we can use the arguments used in the proof of Theorem 3.10 of [14] (in the present case this
is even simpler since they correspond only to the mixed terms there, which comes from the

regularity Eﬁo(—x) € x’H%CO"(E)Y x X; &)) and we obtain
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x4 tr(cl(v)a;\g()\; x,y, y/)Ego(—A; v, x,y))
= 10g(0) tr(cl) S (4: . ) 8o (=23 ¥/, ) + (el S (ks 3. ') S (=23 ¥, )
+ O (xlog(x)). (6.7)

Similarly we have

x4 tr(cl(v)axgoo()»; X, y, y’)Eg(—A; y.x,y))
=1og(x) tr(cl(1) Soo (3 ¥, ¥) S5 (=2 ¥, ¥)) + (1183, S0 (35 ¥, ¥) S (—2: ¥, )
+ O (xlog(x)). (6.8)

Thus the sum of (6.7) and (6.8) integrates in y, y’ to a function of x of the form (1) log(x) +
B(A) 4+ O(xlog(x)) for some meromorphic function «(A), S(A) which we can express in terms
of the scattering operators. But from the discussion before, we also know that this trace has no
log(x) coefficients and so «(A) = 0, which ends the proof by letting x — 0 and writing () in
terms of S(1), S0 (1), Sk (—4) and S% (=) from (6.7), (6.8). O

Remark 6.4. By holomorphy on the continuous spectrum, the terms O (xlogx) in (6.7) and
(6.8) are continuous functions of A € iR, and thus G (e, A) := fx(m)>€ tr(DIT(A; m, m))dvg (m)
is a continuous function on [0, €g] x iR for some small €.

Let us define the super trace of a trace class operator A on L?(dX, ) by
1
s-Tr(A) := = tr(cl(v) A). (6.9)
1

Corollary 6.5. Let A € C be such that S(z) and S(—z) are analytic at z = A, then the super trace
s-Tr(3; S(A)S(—w)) extends meromorphically in u from R(A — u) < —d to u € C, it is analytic
in u = A, and the following identity holds

lim tr(DIT (1; m, m)) dvg(m) = _lE s-Tr(8,S(V)S(— 1))
€—
x(m)>e

|M:)\4'

Proof. Since aﬁ(x)ﬁ'ﬁo(—u) and Bkgoo()\)gg(—u) have smooth kernels, it is clear that their
super-trace extends meromorphically to C and is analytic at 4 = A by assumption on A. Now if
we show

s-Tr (9, So(1) S5 (=) =0 (6.10)

then we have proved the corollary in view of Proposition 6.3. We have to study terms of the form
x —h=§ 2% IRl S I SR L 2 n—4

w(FelWd[n; " 2 oiSmen Wdjn; " Pyviime 7 GiSman (G k) (6.11)

where yj; is the unique isometry of HA+! extending_tk o L;l iU N Uj) — (U N U,
which acts also as a conformal transformation on 3B C R4, As above we use the fact that
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yj?“kRHdH(—M) = RHdH(—M)y]?"k since yjx is an isometry so if aj; = [)/Jf"k(xo)/xo]|xzo €

o

_d _d
C*®(R?), then one deduces that yj’-*k Sppa+1(—p) = a?k % Sppa+1 (—;L)oz?k 2 y]?"k. So the term (6.11)
is equal to

~ -4
f (el () [1; (1) 62 () St (12 3. )81 (") (6) 7]

9Bx0B

X 1, (y/)“_%qﬁ;i (rje (")) Szt (=125 )82 (i ) =2 (n n; () dy dy'.
(6.12)

Using the explicit formula of Sga+1(2; y, ¥’), we see that the local trace of the operator above,
i.e., the integrand in (6.12), can be written under the form

Fik(r iy, y)u(cdmU(y, y)U(y'. y))

for some function fjx and where U(y, y’) is the parallel transport map on spinors on e+
studied in Appendix A and extended down to the boundary R¢. Thus since U (y, y)U (y', y) =1Id
and tr(cl(v)) = 0, we obtain that (6.12) vanishes, which finishes the proof. O

6.2. Analysis of residues of s-Tr(0), E(A)g(—)»))

Let us define F(A) for the value at 4 = A of the meromorphic extension in p of
s-Tr(9, S(A) S(—w))

F() i=sTr(0, S S(—)| (6.13)

n=A"
It is clear from Corollary 6.5 that F'(1) is meromorphic in A € C, but we want to prove that it has
only first order poles, the residues of which are integers. Since S(A) is unitary on {d(A) = 0} it
is analytic at A = 0, so one can define

8+ (M) = St (MSE(0): C®(3X; " 25) — C™(3X;°25) (6.14)

which are the two diagonal components of S(1) := §(A)§(O) in the splitting 02+ ®°%X_. These
two operators are elliptic pseudo-differential operators of complex order 2\ by Proposition 4.9

8:(0) e W (0X: "2 ROxY),

and their principal symbol is |£|**. Let D be the Dirac operator on (3X, ko) and let Dy =
PiDI+ : C°°(8)_(;OE:F) — C®(3X;°2.) be the off-diagonal components of D. If |ID|x =
(DiDqE)%, it is possible to factorize S (1) by (Id + |D|¢)’)‘Si(k)(1d + |D|3F)*A and this
operator is of the form Id + K (1) for some meromorphic family of compact operators on
L*(3X; OZ}F), it is thus Fredholm on this space. Then we can use the theory of Gohberg and
Sigal [10] like in [18] or Section 2 of [13] for these operators. In particular, one can define
the null multiplicities N,,(S+(X)) of 8+(1) at a point Ay as follows: by the theory of [10],
for a meromorphic family of operators L(A) = Id + K (1) acting on a Hilbert space 3 with
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K (X)) compact, with L(A) invertible for some A, there exist holomorphically invertible operators
Ui(A), Uz2(2) near Ag, some (k;)i=o,...m € Z \ {0} (with m € N) and some orthogonal projec-
tors P, on L2(3X; %X, ) such that rank(P;) = 1 if I > 0, P P; = §;; and

L) =U1(3) (Po + ) 0-— ) Pz) Ur (1), (6.15)

=1

then we define the null multiplicity at Ag by

Nio (L) = Z k. (6.16)

k;>0

Note that, by [10], this is an integer depending only on S8+ (1) and not on the factorization (6.15)
and that N, ,(L(X)) = 0if and only if L) Lis holomorphic at A = Ag.

Proposition 6.6. The function F (1) of (6.13) is meromorphic in A € C, one has
F(A) =FP,—; TR(3,8_ ()8! (M)) —FP -, TR(B}LS_I,_()\)S_T_I (u)) (6.17)

where TR is the Kontsevich-Vishik trace of [20] and FP,,—; means the finite part (or regular
value) of the meromorphic function of u at @ = A. The poles of F (L) are first order poles, with
residue at a pole Ly given by

Res; 5, F(2) = Tr(Resyzyy (318- ()8 (1) 1)) — Tr(Respzye (3,84 M8+ (M) 7'))
= (N?»o (8*()‘)) - N?»O(S*O‘)_l)) - (NAO(SJr()‘)) - NXO(SJr()‘)_l))

where N, is the null multiplicity defined in (6.16).
Proof. The first statement is straightforward since
s Tr(0, SV S(—p)) = TR(3: 8- (M)S="' (1)) — TR(8:8+ ()87 ()

and we know from the work of Lesch [21] that the Kontsevich—Vishik trace of an analytic family
of log-polyhomogeneous operators A(x) extend meromorphically to i € C, so it suffices to use
the fact that s-Tr(9; §(A)§(— ) analytically continues to u € C and is analytic at 4 = X to
prove (6.17).

As shown in Proposition 6.3, F (1) can be written as a trace of a meromorphic family of trace
class operators, more precisely, using the fact that cl(v) anticommutes with S(1) and Sp(r) for
all A where they are defined,

1 ~ ~ o~
F(L) = - tr(clw) (B S ! — akso(x)sg(—/\))).
Consequently, the polar part of F'(1) at a pole A is given by the trace of the polar part (which is

finite rank) of cl(v)(3; S(4)S(1) ™! — 8, So(1) S (—1)). But clearly from the explicit formula of
Sppa+1 (1), we see that aﬁo(xﬁg(—,\) is holomorphic in A € C. Now use that §(O)2 =Id to write
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)3, SW) SR ! = +i L0, (- W5 0) (S S.©) 7' Py
— i3 (S WS- ) (S 3 ©) ' P (6.18)

and write a factorization of the form (6.15) for 8 (1), from which it is clear that 9,8+ (1)S+ (1) !
has only first order poles except possibly

Ui(3) <Po +) (=) P1> R U2 (U2 (1)~ < D 0—x)7" Pl) Uiy~

=1 =1

+ Ui (1) (Z(x — o) Pz) R U2 (WU (1)~ (Po +Y (—x) M Pz) Uiy

=1 =1

But this is a finite rank operator and so by the cyclicity of the trace, we deduce that the trace of
this term is holomorphic in A. To finish the proof, it suffices to apply the main result of [10]:

tr(Resps (3184 ()82 ) )) = N (8 (1) — Ny (820 ™'). O
Let us define the multiplicity of resonances as follows
m+(Ag) := rank(Res;h:;\0 Ry (A)). (6.19)
We want to identify scattering poles and resonances.

Proposition 6.7. Let Ag € C, then the following identity holds
Ny, (S; (—)»)) =mx(Ao) +1_1/2-N,(Ao) dimker S+ (—2o). (6.20)

Proof. We just sketch the proof since it is very similar to that of Theorem 1.1 of [13], and we
strongly encourage the reader to look at [13]. The first thing to notice 1,§ that Ny, (84 L—A)) =
N_3,(8+ (1)) and that Ny, (S£(A)~") = Ny, (85(—2)) since 84(1) ™! = S+ (0)8=(—1)SL(0) .
Remark that Ry (A) and 84 (A) are analytic in {)(1) > 0} and so the identity (6.20) is trivial (all
terms are 0) for 9 (Ag) = 0.

Now suppose that i(19) < 0. First we prove that

Ny, (8;(—)»)) —1_1/2-ny(Ao) dimker S+ (=) <m+(Xp). (6.21)

By (4.4) and (4.5), S+ () can be represented for (1) < —% by

_—d
S:I:()‘;y’ y’)::l:i[(xx’) ’ 2Ri()h;x’y’x/’y/)]|x=x’=0

and the expression can be extended to A € C meromorphically as a singular integral kernel using
the blow-down maps like in (4.10). Then we can apply mutatis mutandis Lemma 3.2 of [13],
where S(A) there is replaced by S+ (X) here, the function z(A) there is A here, and we have to
multiply the factorization (3.11) of [13] by 5; (0) on the right, which is harmless since it does not
depend on A. We want to apply the factorization of S(1) obtained from this Lemma 3.2 of [13]
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to prove (6.21), in a way similar to Corollary 3.3 of [13]. First Corollary 3.3 in [13] can also be
rewritten (using the notations of [13]) under the form

Nio (S = 2)) = 1_nj2-n, (o) dimker S(n — ko) < myy (2 (WR(M))

by using Eq. (3.19) in [13] if Ao € n/2 — N and the fact that c(n — A) is holomorphic at all
Ao ¢ n/2 — N. Then the proof of this Corollary 3.3 in [13] can be copied word by word by
replacing §(n — 1) and c(n — 1) there by 85(—A) and C(—2) here, and m;, Z'(M)R(V)) by
m+ (Xo). This finally proves (6.21).

Then we need to prove the converse inequality of (6.21). From Lemma 4.7, Corollary 4.8 and
the fact that S}(O) §i ©O)y=Id|o .. We deduce

Re(h) — Re(—3) = = Ex(—1)C ()8 (ML (0) cl(v) EX (—2) (6.22)

which is the equivalent in our setting to the identity (3.15) of [13]. Since Lemma 3.4 of [13] is
only based on the identity (3.15) in [13], the structure of the resolvent kernel at the boundary and
the unique continuation principle of Mazzeo [23], the same proof applies and is actually easier in
our case since there is no pure point spectrum thus no resonance in the physical sheet {1 (A1) > 0}.
This implies

Ny (85(=2)) — L_12-n, (ho) dimker 8 (—Ao) = m+ (ho).

The idea of the proof of Lemma 3.4 of [13] is to use (6.22) to write the residue of Ry () at Ag
with :M(Xo) < 0 in terms of the singular part of the Laurent expansion of 84 (), itself obtained
from a factorization of the form (6.15), then use the fact that R+(—1), E<(—A) and Ei(—k)
are holomorphic in {!(A) < 0} and finally count the rank of the residue in terms of the k; of the
factorization (6.15). O

Theorem 6.8. The function F ()) is meromorphic with first order poles and integer residues given
by
Res; =z F (L) =m4 (o) — m—(ro) + L_1/2-N, (ho) Ind(8_(—10))
=my(ho) —m—(ro)

for R(ho) <0, where my(Ag) is defined in (6.19).

Proof. Apply Proposition 6.7 with Proposition 6.6. To see the index of S_(—Ag) appearing,
we also use that 84+ (—Xp)* = 8_(—Ag) for A9 € R, which comes from the self-adjointness of
S(—Xo). The fact that the index of S_(—Ag) vargshes comes from the invariance of the index by
continuous deformation and the invertibility of S(A) except on a discrete setof L € C. O

We deduce directly our main theorem from this theorem, Corollary 6.5 and the identity (5.28):
Theorem 6.9. The odd Selberg zeta function Z ;l 5 (X) on a spin convex co-compact hyperbolic

manifold X p of dimension 2n + 1 has a meromorphic extension to C, is analytic in a neighbor-
hood of the right half-plane {R(X) = 0}, and Ay is a zero or pole if and only if the meromorphic
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extension R (A) or R_(A) of (D £ ir~! Sfrom {N(A) > 0} to C has a pole at Lo, in which case
the order of Ao as a zero or pole of Z?-, 5 (X) (with the positive sign convention for zeros) is
given by

rank Res;, R_(A) —rankRes;, R4 (}).

7. Eta invariant of Dirac operator

In this section, we will assume that the dimension of X is odd, thatis, d + 1 =2n + 1. First,
we prove

Proposition 7.1. Using notation (5.10), the following estimate holds
Tr(De_’Dz) = O(t_l) ast —> oo.

Proof. Since the claim easily follows from (5.5) when 6 < n (and actually in that case one gets
directly O(r~3/?) instead of just O (t~!)), we assume that §; > n in the following proof.

Let us write the operator De~'P? as a contour integral
1 _
De~'P? = _,/e—“zD(D2 —2?) "oad (7.1)
2mi
A

where A = [re!Tt /8.y > 0} U {re”/3;r > 0} oriented from +ooe /8 towards
+00e!T+7/8) et us check the identity (7.1): by Corollary 3.5, we have that D(D? —2?)~! =
DR(i 1) is holomorphic in J(1) < 0 as an operator bounded from x€L? to x ¢ L? for all € > 0,
moreover ||[DR(@iM)||;2_, 2 = O(1/|3(A)]) when |A| — oo thus the integral converges in the
operator norm of L (x¢ L%, x~¢ L?). Moreover, applying the integral (7.1) to a C°(X) function f
defines a function «(¢) and since —A2(D? — A2)~! =1d — D%(D? — 2%)~!, we see that the inte-
gral converges in C°°(X) uniformly in ¢ € [0, co) and solves d;u = — D%y with u(0) = Df.Itis
easy to prove that the C¥ norms of the integral kernels in (7.1) also converge by applying powers
of D? on the right and the left and using Sobolev embeddings. The same is true for the integral
kernel of the operator DHd+l€71DH2'Hd+] in terms of the resolvent kernel Dypa+1 (D]%Id 0= A7
and by Proposition 5.3 we deduce that

1
tr(De—sz)(m) =3 f e—’“wu(m)zxd,\
Tl
A

with wy (m) = tr(DR(A) — DRya+1(A))(m). Since w;) € x2ird Coo(X) s holomorphic in
J(A) <0, itisin L'(X) if I(1) < 0, and for J(1) < 0 one has the asymptotic

K\, €):=2A / wir(m)dv(m) = e¥*F (L) + LG (A, €)

x(m)>e€

where F(}) is a holomorphic function of A and G(, €) is continuous in (A, €) down to € =0
and holomorphic in A. In particular for |A| < 1, we have |K (%, €)| < C for some constant C > 0
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independent of (A, €) and lime_.0 K(A,€) = AG(A,0) as long as J(1) < 0. We can thus use
Lebesgue’s dominated convergence theorem to deduce that

lin}) / < / efmzw,-k(m)zx dk) dv(m) = / e*tkz)\G(k, 0)dAx.
€—>
x(m)>e AN{|A|<1} AN{|r]<1}

Now if we can show that, for A € A N {[A] > 1}, the estimate [|wilp1x) = 0 (e“'*) holds for
some « > 0 we can use Lebesgue’s dominated convergence theorem again for the integral cor-
responding to A € A N {|A| > 1}, and then changing variable u = /7A in the whole A integral
gives directly

lin}) tr(De*’Dz)(m) dvim)=0(t™") ast — oo.
e—
x(m)>e

‘We thus use that for 91(1) > d, one has

wp(m) =te([DR(A;m,m) = DRyari (im,m')], _ )= tr(DRyari(him, ym)y,)
yel\ld

where v, : °%,, — X, is the action induced by y on the spinor bundle. The map y* is given
by y*[g,v] = [yg,v] for [g,v] € 0., [yg,v] € OZ‘ym under the identification in (2.4). Us-
ing (2.5), the Euler integral formula for the hypergeometric function

1
d+1 rCer+1 A1 =p)*!
F<L+A,A+1,2A+1;z>= @+ ( d)ﬂ
2 '+ DI o) ; (1 _Z»Z)T+)\.

the expression of the Beta function B(A + 1, A) in terms of Gamma functions, and the obvious
bound 1 —tz>1—z= tanhz(deH (m,ym)/2) when z = cosh_z(deH (m, ym)/2), we obtain

rEE 4 )rotn

—d—2%0)
T2t ‘

|wp.(m)| < C

> sinh(dgari (m, ym)/2)

yel\{ld}

Using the Legendre duplication formula, the term containing Gamma functions is uniformly
bounded for 9(1) > 0. Since the injectivity radius of X = I"'\H?*! is strictly positive, i.e.,

meHd-Hi’nyfeF\{Id}{Sinh(d]HIdH (m,ym)/2)} > e

for some € > 0, we deduce the estimate

|w)\(m)} < eCRM) Z e~ /2RO dyar1 (m,ym) (7.2)
yel'\{Id}

Now for those (finitely many) y € I" \ {Id} for which Lemma 5.2 possibly does not hold we still
have the weaker inequality
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e dud+1 (m,ym) < Cx(m)2

for some C > 0, where x is a boundary defining function. In particular e Mya+1(mYm) qescends
to an L' function on X if W(A) > d/2. Combining finally with Lemma 5.2 and (7.2), the conver-
gence of Poincaré series in {)1(A) > d} implies the bound in the same half-space

CR(A
||CUA||L1(X) <e ")

and this ends the proof. O

We define the eta invariant of D by

n(D) = /
0

where the trace Tr means the integral of the local trace like in (5.10). Note that the integral on
the right hand side of (7.3) is finite by Corollary 5.5 and Proposition 7.1. Theorem 6.9 about
meromorphic extension of Z7. -(1) and its analyticity on [0, 0o) implies directly the following
result:

(De~'P%) dt (7.3)

NI

Theorem 7.2. The eta invariant of the Dirac operator over a convex co-compact hyperbolic
manifold X  satisfies

exp(zin(D)) = Z{ 5(0). (7.4)
Proof. We start by writing
o0
2 %/exzz da.
0

then we have by (5.25)

n(D) =

Q|

00 00 . ooa 70 on)
f/e*“Tr D2)dkdt:l—/'\(,LdA
s JTO Z1 ()

and this concludes the proof by Theorem 6.9, in particular, the meromorphic extension of
Z;’ﬁ‘ 5 (1) over C with A =0 as aregular value. O

8. Eta invariant of odd signature operator and its structure on Schottky space

For a (4m — 1)-dimensional convex co-compact hyperbolic manifold

Xr = I'\SOo(4m — 1,1)/SO@m — 1),
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we consider the odd signature operator A on odd forms A°d = @2’" A%P~1 acting by

(—=1)™*P(xd + dx) over A*P~! as in Millson’s paper [27]. Recall that A2 A and A is self-
adjoint. We want to make a sense of

n(A) = TrA (m) dv(m)dt (8.1)

«/—
where Tr, is the local trace on the bundle A% First it is easy to see that Tr(Ae™" Ay is the
same as Tr yom—1 (xd e "2 since the other parts are off-diagonal if we write Ae™"® as a matrix

with respect to the natural basis of A°%, First we show that the local trace tr om—1(xd e'?)
is integrable on X . As in the spinor bundle ¥, the bundle of (2m — 1)-forms can be under-
stood as a homogeneous vector bundle given by the representation A>”"~ !¢ with the standard

representation ¢ of SO(4m — 1), which decomposes into

where ¢ denotes the standard representation of SO(4m — 2). As in Section 5.1, there is the
A= 1¢ radial function P; associated to *d e /2, and we have the corresponding scalar func-
tions p; (), pzm 2(r) of P, restricting to the representation spaces on the right hand side
of (8.2). Now, as in Proposition 5.1, we have

2m—2

Proposition 8.1. The scalar components p; £(r), pr (r) are given by

__ (4m— Dsinh(r) d m-l e =2

Pr =2 a2 Taeosny ) TS T ) =

Proof. The equalities follow from Lemma 7.4 and Theorem 7.6 in [31] and Theorem 1.1
in[27]. O

Using this proposition and repeating the same arguments as in Section 5, one can easily show
that tr yom—1 (xd e ~'2) is integrable over X . By the same arguments as in Proposition 5.4 and
Corollary 5.5, one can also obtain the corresponding results, which imply that the small time part
of the integral fooo -dt in (8.1) converges. The convergence of the large time part also follows
from the corresponding computations to (5.5) and Lemma 5.2 under the condition § < 2m — 1.
Hence the eta invariant n(A) given in (8.1) is well defined if § < 2m — 1. For W(}) > 6 —
(2m — 1), we also have the Selberg zeta function of odd type Z}’ﬂ, 4(A) just putting o = Azim - é
in (5.21) and (5.23), which coincides with the one in (1.1) introduced by Millson [27]. We first
have a result similar to the case of spinor bundle dealt with above:

Theorem 8.2. If X  := I'\H*"~! is a convex co-compact hyperbolic manifold with the Poincaré

exponent 81 < 2m — 1, then the local trace Tr yom—1 (xd e "2 is integrable on X for all t > 0, so
that the integral (8.1) converges and defines the eta invariant n(A). Moreover, we also have

TN = 79, ,(0). (8.3)
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Proof. We already showed the first claim. The equality (8.3) also easily follows from the corre-
sponding results to Proposition 5.4 and the assumption é; < 2m — 1, from which we do not need
to show the meromorphic extension of Z%y A(AM)atA=0. O

It turns out that this eta invariant (A) of the odd signature operator A has an intimate rela-
tionship with the deformation space of the hyperbolic structures when X is 3-dimensional. To
explain this, first we review the work of Zograf [36].

8.1. Zograf factorization formula

A marked Schottky group is a discrete subgroup I of the linear fractional transformations
PSL(2, C), with distinguished free generators y1, y2, ..., ¥, satisfying the following condition:
there exist 2g smooth Jordan curves C,, r = %1, ..., £g, which form the oriented boundary
of a domain £2¢ in C=CuU {oo} such that y,.C, = —C_, forr =1, ..., g. If £2 is the union
of images of 29 under I, then Yy = I'\§2 is a compact Riemann surface of genus g. The
action of I" on C naturally extends to the action on H*> where dH? = C and the quotient space
Xr = I'\H? is a Schottky hyperbolic 3-manifold whose boundary is the Riemann surface Y.
Here let us remark that 8 is the Hausdorff dimension of the limit set A in dH?> of I" and 8 is
also the smallest number such that ] {V}(l - qf,) absolutely converges whenever i (s) > §r. The
function [ {y}(l — qf,) was briefly described in [2] where it was asserted without the proof that
with the values of ¢, chosen appropriately, the infinite product is defined for %(s) > 6/ and has
an analytic continuation to C.

Each nontrivial element y € I" is loxodromic: there exists a unique number ¢, € C (the mul-
tiplier) such that 0 < |g, | < 1 and y is conjugate in PSL(2, C) to z — ¢, z, that is,

yz—ay L4
yi—b,

z—by

for some a,, b, € C (the attracting and repelling fixed points respectively). A marked Schot-
tky group with an ordered set of free generators y1, ..., ¥, is normalized if a,, =0, b,, = oo,
ay, = 1. The Schottky space &, is the space of marked normalized Schottky groups with g gen-
erators. It is a complex manifold of dimension 3g — 3, covering the Riemann moduli space 9,
and with universal cover the Teichmiiller space <.

Like the Teichmiiller space ¥, the Schottky space G has a natural Kéhler metric, the Weil—
Petersson metric. In [33], Takhtajan and Zograf constructed a Kihler potential S called classical
Liouville action of the Weil-Petersson metric on S, that is,

39S = 2iwwp (8.4)

where 3 and 9 are the (1, 0) and (0, 1) components of the de Rham differential d on &, respec-
tively, and wwp is the symplectic form of the Weil-Petersson metric. On the other hand, from
the local index theorem for families of d-operators in Takhtajan and Zograf [34], the following
equality also follows

8510g = ——WwWPpP (8.5)
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where Det A and t denote the ¢ -regularized determinant of the Laplacian A of hyperbolic metric
and the period matrix respectively over the Riemann surface corresponding to an inverse image
in T, of a point in G,. Let us remark that Det A and detImt descend to well-defined func-
tions on G,. Comparing (8.4) with (8.5), one can expect a nontrivial relationship between S and
log DetA Indeed in [36,37] Zograf proved

detIm< *

Theorem 8.3 (Zograf). There exists a holomorphic function F(I') : &, — C such that

—_— X _—— .
detImt Cg OXP 127

where cg is a constant depending only on g. For points in &4 corresponding to Schottky groups I
with 8 < 1, the function F(I") is given by the following absolutely convergent product:

F(I) = ]_[ ]—[ ") (8.7)

{r} m=0

where q, is the multiplier of y € I', and {y} runs over all distinct primitive conjugacy classes
in I excluding the identity.

Combining the equalities (8.6) and (8.7), these are called Zograf factorization formula. This
result was extended by Mclntyre and Takhtajan to the Schottky groups without the condition
for 6 in [26]. Here they used the ¢-regularized determinant of A, acting on the space of n-
differentials so that the corresponding holomorphic function is F,,(I") =[] ) ]_[m o1 — q"+m)
which absolutely converges for any Schottky group I" if n > 1.

8.2. Etainvariant as a functional over the Schottky space
By the construction of X and its boundary Y, the eta invariant n(A) can be understood as
a functional over the Schottky space G,. Now a natural question is to describe the eta invariant

1n(A) as a functional over &, . For this, we have

Theorem 8.4. Let 62 be a subset of G4 consisting of normalized Schottky groups I'’s with the
property 8 < 1. Then we have

F(I') = |F(F)|6Xp<—%in(A)> over &,

in particular, n(A) is a pluriharmonic function over 62.

Proof. The proof is a simple application of the equality (8.3). For this, as in Proposition 5.6, we
rewrite Z "F 4 (A) with respect to the group PSL(2, C) as follows:

[ H (L= e ()2 iy )~y | 24D

Zrat) = —i6 (o 20 204y
’ [y 1€PTox k, = —o (=7 (g )= Gy ) ™y |~ (+D)

(8.8)
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Here y runs over the set of I'-conjugacy classes of the loxodromic elements in I” and a
loxodromic element y can be conjugated to a diagonal matrix with the diagonal elements
My = exp(%(ly +1i0))), ,u;l = exp(——(l +1i6),)) in PSL(2, C) (Juuy | > 1). Let us remark that
the infinite product on the right hand side of (8.8) absolutely converges for (X)) > 6 — 1, in

particular, at A =0 since 6 < 1.

Now comparing the definition of ¢,, and (., , one can see that g, = ll«,, , that is, qy/ = u;l.

Hence the odd Selberg zeta function Z. , (0) has the following expression in terms of gy,

20— ] [ e quy<quy>z>
y1ePion k6= 0(1_(%’%’ )zquy(CIy%/)z)
(I -q5q;™ “) l+m)

[v1€Plox k,£=0 [v]ePliox m= 0

Combining this and (8.3) completes the proof. O

Remark. In the proof of Theorem 8.4, we assume the condition § < 1 which simplifies the
proof in several steps. But, one can expect that a similar result still holds over the whole Schottky
space &,. This extension to & is also related to the proof of the assertion of Bowen in [2] about
the meromorphic extension of [ ] 1 (1 —qy) over C. These problems will be discussed elsewhere.
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Appendix A. Computation of parallel transport in the spinor bundle

Let 17,’,:’/ denote parallel transport in the tangent bundle of the upper half-space model H4*!
of hyperbolic space, between points m = (x,y), m’ = (x/,y’), along the unique geodesic
linking them. We identify T, H?t! with R?*! using the orthonormal basis at m given by
{xdy,xdy,,...,x0y,}. We denote by 7(m,m’) the matrix of the transformation 7 written in
these bases.

Proposition A.l. Let r := |y — y/|, pg := +/(x +x")2 +r2. The special orthogonal matrix
T(m, m') has the following coefficients:

00 =1—2r%/pj,

70; =—2(x +x') (y; — ¥})/Pit Jorj=1,....d,
to=2(x+x)(vj =¥))/e  forj=1,....d,
=85 —2(y; =¥ —¥))/pi forj.le{l,....d}.

which are smooth on the stretched product HIT! x o HYH! defined in Section 3.2.
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Proof. Let A be the translation by (0, y’) in R4+!, composed to the left by the homothety of
factor 1/x’. This isometry of HY+! maps m’ to (1,0). In the above trivialization of the tangent
bundle, A, acts as the identity. Moreover, since it is an isometry, A transforms the geodesic
from m to m’ into the geodesic from A (m) to (1, 0) and preserves parallelism. Thus (as matrices)

/
(m,m’) =1(A(m), (1,0)), where A(m) = (% 4 x,y ) (A1)
‘We now concentrate on (m, (1, 0)).
If y =0 it is clear that t((x, 0), (1,0)) is just the identity matrix. Suppose y # 0. Let 9, :=
% Z?:l yjdy; denote the radial vector field, defined outside the vertical line through the origin.
Define R :=xd,, X :=x0y. Foreach j > 1 set ej :=x0dy,, and let Tj :=e; — (e;, R)R denote
the component of e; which is tangent to the sphere §9=1_ The geodesic from m to (1, 0) lives in
the totally geodesic plane I7,, passing through (1, 0) and m, which is a copy of the hyperbolic
2-space. Along this plane the vector fields T; extend smoothly at the vertical line through the
origin. It is clear that the vector fields 7'; are parallel along I1,,.

Lemma A.2. In the plane I1,,, parallel transport between m and (1, 0) is given by the complex
number

—r+i(l+x)
r+i(l4+x)°

Proof. We use as (real) basis for T IT,, the orthonormal vector fields X and R. The complex
structure rotates R to X. The formula is deduced from the similar formula in H2. 0O

Equivalently, in the basis {X, R}, parallel transport is given by the 2 x 2 orthogonal matrix

LS +D2=r2 2r(x+1)
Pit —2r(x +1) ()c—i—l)z—r2 ’

We decompose a vector V =apX + Z?:l aje; into its tangent, respectively orthogonal compo-
nents to I7,, as follows:

d d
V=apX + (Za,-<e,-, R)>R+ZajTj.
j=1

j=1

Since T are parallel, the orthogonal component is constant during parallel transport. Using (A.1)
and Lemma A.2, we write

d d d
t(m,m’) (aoX + Zajej) =aot(X) + Zaj<ej7 R)T(R) + ZajTj
j=1

Jj=1 j=1

x+x)2—r2 r(x + x’ d
—a T 00 T R S (e — (e RIR)

P P j=1
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d
2r(x +x’ x +x)%—r2
+Zaj(ej,R)<— ( k ) x + )2 R
i=1 Pt Pt

from which the proposition follows, since (og, (y — y')/ott, V', X/ o1, X'/ pge) are smooth coordi-
nates on the blow-up H¢t! xo Ht!, O

The above oriented basis {X, eq, ..., eq} of THYH! extends smoothly to the boundary {0} x
R¢ of H*! as an orthonormal basis of the zero tangent bundle with respect to the hyperbolic
metric. Therefore, by the proposition above, T (m, m’) is a smooth section on HA*! xo H*! in
the pull-back vector bundle

The orthonormal frame bundle Pso of the O-tangent bundle is trivialized over HY*! by the
frame p = {X, ey, ..., eq}, therefore the (unique) spin structure Psp;y, is identified with He+! %
Spin(d + 1). Denote by p one of the lifts of p to Pspin. By definition of the lifted connection,
parallel transport in Pspi, of the section p along the geodesic from m to m’ is pU (m, m’), where
U (m, m’) the unique lift of the SO(d + 1)-valued function 7 (m, m’) to the Spin(d + 1) group,
starting at the identity for m = m’. Thus, parallel transport of a constant section o (with respect
to the trivialization p) in the spinor bundle is simply

o [5.01=[pU(m.m'). 0] =[5, U(m,m')o]

where multiplication in the last term is the spinor representation. By abuse of notation we write
!
U(m,m") for )i .

Proposition A.3. Let m = (x, y), m’ = (x’, y') € H¥tL. In the above trivialization of the spinor
bundle, parallel transport takes the form

x+x

,
U(m,m') 5 cl(X) cl(R).

Proof. We view the Spin(d + 1) group inside the Clifford algebra as the group generated by
even Clifford products of unit vectors. The projection 7 : Spin(d + 1) — SO(d + 1) is given by
the adjoint action in the Clifford algebra on vectors:

7(e)(V):=cVc

the kernel being precisely {=1}. We must therefore examine the adjoint action of A(m,m’) :=

% — é cl(X)cl(R) on O7H4+! Note that any Clifford element of the form o 4 8 cl(X) cl(R)

with o + 2 =1 belongs to the Spin group. Next, A~ (m, m’) = % + é cl(X)cl(R) so

N2 2 ,
n(A(m,m/))X: <M — V_)X_QMR

2 2 2
Psg Psg Psg
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which coincides with the action of t (m, m") on X from Proposition A.1. Similarly, for the vector
fields T; from the proof of Proposition A.1 we have 7 (A(m,m’))T; = T; = t(m,m’)T;. Thus
7 (A(m,m’)) = t(m, m’). The proof is finished by noting that A(m, m") was normalized so that
Am,m)=1. 0O

Corollary 8.5. Let m’' = (1,0), m = (0, rw). In the limit r — o0, the parallel transport U (m, m’)
tends to — cl(X) cl(R).
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